
Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

233 

14. The ABCs of Interclass Communication 
 
Overview 
 
 We’ve come a very long way since building our first example program in 
Prograph CPX in Chapter 1. But something’s still missing. Something is very different 
between the Prograph programs we’ve described so far in this book and polished 
commercial software. This difference is a platform-specific graphical user interface (or 
GUI for short). Just as visual languages like Prograph facilitate and improve the 
efficiency of programmers, modern computer operating systems such as the Macintosh 
System 7 and PC-compatibles’ Windows provide a pictorial representation of disks, 
directories, files, menus, windows, and controls to make the operation of the computer 
easier for the end user. Prograph provides all of the user interface design and handling 
tools you’ll need to add powerful user interfaces to your programs.  
 
 Writing methods to create and manage a user interface is not necessary in 
Prograph as it is in languages like C or Pascal. Prograph CPX provides an excellent 
collection of user interface handling classes called the Application Builder Classes, or 
ABCs for short. In this chapter, we’ll examine Prograph’s visual tools for constructing 
user interfaces (the Application Builder Editors or ABEs) and we’ll look at how the ABCs 
intercommunicate. In the following three chapters, we’ll present examples of how the 
ABCs and ABEs simplify user interface construction by writing fully-functioning 
programs with a minimum of coding.  
 
Prograph GUI Construction Tools 
 

 In classical procedural programming languages such as C or Pascal, programmers 
were forced to piece together a complex series of operating system or API routine calls to 
set up windows, menus, dialogs, and so forth. Every time a new program was needed, a 
new GUI and its supporting handler code had to be built from scratch -- a taking great 
deal of time and effort.   
 Recently, a number of object-oriented application frameworks, specialized class 
libraries for handling GUIs, have emerged. Concurrently, code generator programs have 
been made available that design user interface with pictorial tools then output source 
code to handle these GUIs. Even with frameworks and code generators, it is still not a 
simple task to design and manage a user interface with traditional programming 
environments. The main problem is the level of integration between these tools. Although 
a few C++ programming environments do contain user interface design tools such as 
application frameworks and code generators, they are still primarily treated as 
independent tools. After you design a user interface, you must still go through the edit-
compile-link-debug cycle to write and test the code. If the user interface doesn’t do what 
you want it to, you’re in trouble!  
 A second problem is that typical application frameworks and code generators 
provide fairly fixed solutions to flexible problems. They treat user interfaces as just 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

234 

collections of independent visual elements that are arranged on the screen until they look 
right and always behave in a fixed fashion. But efficient GUI programming requires 
much more than this. The GUI elements may intercommunicate (the theme of this 
chapter). However, the interdependence between the elements is often not known until 
the GUI is built or may change as the program is running. Static code libraries can’t 
account for this dynamic aspect of GUI construction. In addition, the GUI handler code 
of frameworks or code generators must integrate seamlessly with the code you supply -- 
the code that makes the GUI actually carry out the actions you want it to. Unfortunately, 
these tools have always left this critical part entirely up to you. Where’s the reduction of 
effort and programming time that these tools were supposed to give you? 
 The kind souls at Prograph International have designed Prograph CPX with these 
limitations in mind. Prograph comes with a rich set of fully-integrated yet simple to use 
GUI design and management tools. Included with Prograph CPX is a special object-
oriented application framework called the Application Builder Classes (ABCs), and 
special GUI design tools called the Application Builder Editors (ABEs). These tools are 
tightly integrated, extremely flexible and extensible. Used together, these tools allow 
Prograph programmers to graphically design powerful user interfaces for their programs 
much quicker and without the urge to kick their dog or tear out their hair. GUI 
construction and programming typically takes about half the time needed with 
comparable tools in C++. 
 
 How is this possible? As we’ll see shortly, the Application Builder Editors don’t 
just determine how the user interface will appear. They do much more than that. The 
ABEs also create objects from the ABCs that will determine the behavior of new 
elements (like text-editing boxes, check boxes, radio button sets, push buttons, etc.) that 
you add to the GUI. They set the default values of the attributes of the classes that make 
these elements work. And, most importantly, the ABEs set the interrelationships between 
these classes that define how they work together as a team. Handling the GUI elements 
requires the addition of little new code by the programmer, which gets your program up 
and running in no time. More importantly, the design and coding of the user interface is 
fully interactive -- you can design all or part of the GUI, try it out and debug it, or add 
new GUI elements or new code to it even as the GUI code is executing! 
 
What are Application Frameworks? 
 
 The key component of all GUI design and code generation tools is the application 
framework -- class libraries which encapsulate all of the typical actions of a user 
interface, including the presentation of menus, windows, dialogs, buttons, check boxes, 
radio button sets, editable text fields and popup menus. Most application frameworks also 
implement the main event-handling loops of applications, so that the framework itself 
provides most of the code needed for a full-fledged program. The programmer is only 
responsible for adding application-specific code, namely the specific actions taken when 
the user clicks the mouse or selects a menu option. Application frameworks all tend to 
have a core for features in common, although the precise way in which these features are 
implemented may differ greatly between them.  
 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

235 

 There are three ways to view application frameworks: 
 
 1. An application framework is a class (inheritance) hierarchy composed of a 
number of GUI-handling classes. In most cases, a single parent class is subclassed many 
times to form all of the user interface elements. Examples of multiple inheritance (where 
a class is derived from more than one parent class at a time) are scarce in commercial 
application frameworks.  
 
 2. The graphical relationship between the visible user interface elements, such as 
buttons or pop-up menus, makes up a second class hierarchy. This is called the view or 
containment (ownership) hierarchy. It derives its name from the arrangement of the user 
interface elements within each other on the screen -- one “contains” another or, stated 
another way, is “owned” by its enclosing element. For example, a window contains push 
buttons, and these buttons are in turn owned by their enveloping window. These 
relationships are obviously important in the visual design of the user interface. 
 
 3. Finally, the application framework must be viewed in terms of the functional 
relationships between its classes. These relationships are of two types. The first is the so-
called “chain of command” of the user interface. When the user clicks the mouse on a 
user interface element (the “target” of the user action), the application framework’s code 
must first check to see if that GUI element’s object should handle the click or pass along 
that action to another object to perform an appropriate action. For example, if the user 
presses a key on the keyboard when a text-editing box is active in window (i.e. the 
current target), should that action be handled by the edit box and be interpreted as a letter 
of text? Or, should the keypress be ignored by the edit box and be passed along to be 
handled by a menu as a keyboard equivalent of a menu command? The chain of 
command determines which object will handle each user action. 
 
 A second functional relationship between classes is that between visible GUI 
elements and “behind the scenes” non-visual objects. An example of this is the 
“mapping” between how your program’s data is displayed in a window, stored in a file or 
printed on a page. A special non-visible GUI object called a document helps define the 
relationships between these alternative representations of your program’s data by 
accessing mapping objects, whose chore is to coordinate the actions of the individual 
classes that handle window displays, file access and printing. 
 
 It is the latter two major relationships within the application framework that are 
heavily based upon interclass cooperation. The application framework classes provide 
programs with a consistent user interface by sending messages from one user interface 
class to another. We stated earlier in this book that programs could be constructed as a 
collection of intercommunicating objects. Prograph’s own application frameworks 
provides a robust and powerful example of such program organization, yet an example 
that is easily “tamed” by the programmer.  
 
 There’s no shortage of application frameworks in the software world. In many 
cases, each language compiler vendor for a given machine has their own competing 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

236 

framework. For example, C++ programmers of the Macintosh computer have at least four 
application frameworks from which to choose. Obviously, application frameworks make 
the programmer’s task of building and maintaining a GUI easier, or they wouldn’t be so 
plentiful. However, the class libraries that comprise most application frameworks can be 
quite large and difficult to grasp in terms of their inheritance relationships. Some class 
libraries come with a wall poster sized diagram of their inheritance tree to keep nearby as 
a reference when programming. This is supposed to be easy? Luckily, Prograph’s 
Application Builder makes it easy to put a complex application framework to use quickly 
without having to understand all of its minute details. 

The ABCs as an Enhanced Application Framework 
 
 Prograph’s Application Builder Classes (ABCs) are the application framework 
used to construct user interfaces and event handlers for Prograph programs. These classes 
encapsulate visible user interface elements such as menus, windows, dialogs, buttons, 
check boxes, radio button sets, editable text fields and popup menus, as well as invisible 
application components like documents, data files, etc. 
 
 As with all application frameworks, the Application Builder Classes are a 
complex inheritance tree. However, unlike most application frameworks, Prograph’s 
ABCs are not derived from a single base class (for example, in one such framework, all 
classes are derived from a class called Object). The Prograph CPX Application Builder 
Classes are a collection of 147 classes derived via single inheritance from 60 base 
classes. For example, all window and dialog box elements are derived from a common 
Window Item base class; all of the application’s menus are subclassed from a single 
Menu abstract base class; and all files are subclassed from a File base class. This reduces 
the overhead of using a particular class -- if every class was derived from the same single 
base class, a lot of inherited code would be added to every single user interface class 
you’d use. With the ABCs, you use only the code need -- if an ABC class is not needed in 
the final version of your program, it is removed by the Prograph Compiler to make the 
compiled program smaller. The class hierarchy of the Application Builder Classes for the 
Macintosh computer is shown in Figure 14.1. You can also view it and navigate through 
it at any time by opening Prograph CPX’s Info window and selecting the Class Hierarchy 
hypertext link.  
 
Application File Resource 
Background     Data File     B&W Pattern 
Balloon Help         Object File     Color Pattern 
    Window Item Help         Picture File     Graphic Resource 
        Target Item Help         Text File         Color Icon 
        Toggle item Help             Style Text File         Icon 
Bandor     Resource File             Finder Icon 
Behavior Specifier File Alias         Pict 
    Attribute Specifier Font         Small Icon 
    Class Specifier Graphic             Finder Small Icon 
    IAC Attribute Specifier     Line Row 
    IAC Parameter Specifier     Rectangle Screen 
    Menu Item Specifier         Oval Selector 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

237 

    Menu Specifier         Round Rectangle Special Keys 
    Method Specifier     Text Text Editor 
    Persistent Specifier Help Message Text Filter 
    Window Item Specifier     Pict Res Help     Integer Filter 
        Value Specifier     STR Res Help     Integer List Filter 
    Window Specifier     String Res Help     List Filter 
Clipboard     TE Res Help     Natural filter 
Column IAC Data Type     OSType Filter 
Command IAC Descriptor     Range Filter 
    Behavior IAC Event     Real Filter 
        IAC Event Behavior IAC Object Utility 
        Menu Behavior IAC Suite Window 
        Window Item Behavior     IAC Required Suite Window Item 
            Control Behavior Marquee     Control 
    Task Menu         Check Box 
        Deferred Task     Basic Edit Menu         Push Button 
            Menu Task     Basic File Menu         Radio Button 
            Periodic Task     Document File Menu         Scroll Bar 
        Text Task      Standard Apple Menu     Edit Text 
            Clear Task         Apple Menu         Scroll Text 
            Copy Task     Standard Help Menu     Graphic Item 
            Cut Task         Help Menu         Target Graphic Item 
            Paste Task     Text Edit Menu     Popup Menu 
            Typing Task     Text Font Menu     Print View Item 
Commander         Font Menu         Date 
Control Color         Font Size Menu         Page Number 
Cursors         Font Style Menu         Time 
Desktop Menubar     Scroll List 
Document Offscreen         Drag & Scroll List 
Document Data Pen     View 
    Basic Document Data Print Layout         Grid 
Draggor Printer         Multiple View 
    Autoscroll Draggor Rainy Day Fund         OK View 
    Scroll List Draggor Regular Border         Print View 
Environment     Drop Shadow         Radio Set 
Event     Select Border         Selection View 
Event Handler         Default Border             Autoscroll Selection View 
    Finder Handler Resize Window Item Mapping 
    Modal Handler Resizor  
    Multifinder Handler   

 
Figure 14.1: Application Builder Class Library Hierarchy (Macintosh) 

 
 Each Application Builder Class contains references to other related ABCs. These 
references (that is, the technique called composition that we discussed in Chapter 9) form 
the basis of the interclass communication at the core of the view hierarchy, which 
organizes and interrelates the user interface elements on the screen. The Owner attribute 
of several Application Builder Classes is used to refer to the next larger GUI element that 
holds the element in question; that is, the Owner of a Button object is the Window 
object in which the Button object is contained. In other words, if you need to access the 
Window in which the Button lies, you simply read the Owner attribute of the Button. 
As another example, the Desk Top class that represents the appearance of the monitor 
screen has attributes that refer to all of the program’s MenuBar and Windows.  



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

238 

 
 Composition is also used to implement some of the key functional relationships 
between classes. For example, the Document class manages text, graphical or numeric 
data documents, their presentation to the user and their storage. This requires some 
integration between the document, the windows and a printed copy on paper in which its 
data may be displayed, and the disk files in which it may be stored. These relationships 
are reflected by the presence of attributes in the Document class that refer to these other 
relevant classes -- the document class contains such attributes as Application, Window, 
File, and Print Layout. These attributes not only make instances of these classes readily 
available to code in the class methods of Document, but they also make these instances 
accessible to programmers who need to call their class methods.  
 
 Even when a related class’ instance is not directly referenced, it can still be 
accessed by the programmer. In other words, ABCs can find functionally-related classes 
that do not fit any of the above categories. Other ABC classes that are not directly part of 
the inheritance or view hierarchy of another ABC class, and are not referenced by any of 
their attributes, can still be sent messages. Many ABCs contain a Name attribute, which 
is used to provide a label for a particular instance of each Application Builder Class. This 
is analogous to the newly-proposed run-time identification of the emerging C++ standard, 
but instead of identifying the type of the class, it identifies the particular object created 
from that class. This can be very useful in locating and sending a message to one given 
GUI element. If your program presents several windows, each window will be 
represented by an object created from the Window class, but the Name given to each 
Window object lets the program tell them apart.  
 
 In fact, special class methods exist for the purpose of finding a related GUI 
element from its Name attribute. For example, to locate a particular window with a given 
Name, all you need to do is call the Window class’ Find Window method, which 
searches all existing windows to find the one with the name you request. To reference a 
particular item in a window, call the Window’s Find Window Item method giving the 
name of the desired window item. Similar methods exist for locating a desired menu or 
menu item. Likewise, to send a message from one window element to another (such as 
changing the contents of a Text object depending upon the current selection of a radio 
button set), call the first object’s Find Window method to access its containing window, 
then find the second element with Find Window Item. These class methods help to set 
up more indirect messaging between objects. Let’s say you want to enable a menu item 
when a check box is selected in a dialog box (a special type of window). A menu is not in 
the inheritance hierarchy or the view hierarchy of a dialog box, nor is it referenced by an 
attribute in the Window class. But we can still access the menu item. First, the long 
method. When the check box is clicked, we can find the enclosing view of the check box 
(the dialog box window) from the Check Box object’s Owner attribute. The Window’s 
Owner is the Application. From the Application, we get to the Desk Top, and then to 
the MenuBar, all via Owner attributes. Once we have the reference to a MenuBar 
object, we can call its Find Menu Item method to access the particular menu item we 
want to enable. While this seems a little roundabout, remember that without these 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

239 

references, there would be no way at all to access the menu item from within a dialog 
box. But before you get frustrated, here’s the short method. Simply get the value of the 
The Application persistent. This lets you skip stepping through the view hierarchy of the 
check box and go directly to accessing the menu item. 
 
 Finally, there is another very powerful method of setting up interobject 
communication, both among the objects within the ABCs and between the ABCs and 
your own application-specific objects. This mechanism is known as behaviors, a form of 
mapping between an ABC object and the application-specific code it will execute. Since 
the application framework cannot always know in advance which of your methods will 
be called or what inputs your methods will require, it uses a special mechanism that 
involves inject constructs, first discussed in Chapter 4. Remember that injects allow you 
to determine the name of a method that you want to call at run-time, rather than when 
building the program. This lets the ABCs call one of your methods without needing to 
find out where in the ABC code your method would be called and hard-coding the name 
of your method into that ABC code. Such flexibility would not be possible without 
injects. We’ll return to this when we discuss behaviors. 
 
 We’ll be looking briefly at the workings of the most often called Prograph 
Application Builder Class methods and most-accessed attributes to see how interclass 
communication helps to manage complex user interfaces. Afterwards, we’ll take a look at 
how the Application Builder Editors themselves setting up interclass relationships 
transparently for the programmer.  
  
The Application Builder Classes and Interclass Communication 
 
 The Application Builder Classes provide a high-level system of interacting 
objects that interact with the low-level operating system routine calls that manage the 
user interface. By using the ABCs, the programmer rarely has to call operating system 
routines directly, since they are encapsulated into the ABCs. In addition, an ABC Starter 
Project is provided to serve as a fairly complete “skeleton” application. To create your 
own application, all you need do is add new application-specific windows, menus and 
documents to the starter project. The result is faster application prototyping and 
development, as well as easier program maintenance. 
 
 The ABC library is centered about a class called Application that coordinates the 
execution of the program. The entry point for a Prograph program based upon the ABCs 
is a universal method that is itself called Application, in the ABC’s Application section. 
This method receives as input an instance of the Application class stored in the 
TheApplication persistent. This object is then sent an Initial message, which gets the 
application running by allocating memory, creating objects, getting program resources, 
and opening initial windows. The main event loop is then entered by executing the Run 
class method. This loop is executed until the user chooses to quit the program. At that 
point, the Close class method is executed to perform clean-up operations such as 
deallocating memory and closing windows, then the program ends. 
 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

240 

 Although a single Application class is responsible for getting the program up and 
running, application execution involves many more classes than this. The Application 
class must create instances of several other helper classes, such as Desktop, 
Commander, Menu Task, Printer and Clipboard, then send messages to these classes 
to request actions that will handle the user interface and other aspects of the program. The 
Application class has been designed to do just that. Many of its attributes are references 
to these other classes (you can find these easily since these attributes tend to have the 
same names as the classes to which they refer). These references are critical for the 
operation of the program. For example, the Desktop attribute is used to send an Open 
message to the Desktop class which, among its other tasks, opens the program’s initial 
windows by referring back to the Application. Without these references, an excess of 
persistents would have to be amassed to hold instances of each class. It would require too 
much space to describe every example of interclass communication within the ABCs. We 
leave the exploration of the multitude of attributes and methods of the ABCs to the 
readers if they are so motivated (a detailed description of the ABCs is provided in the 
Prograph CPX ABC reference manual as well as in the Info on-line help system). Instead, 
let’s look now at how the programmer can build interclass communication with 
Prograph’s built-in user interface editors.  
 
The Application Builder Editors as GUI Designers 
 
 The Application Builder Editors (ABEs) are a series of graphical user interface 
design tools. An editor exists for each major GUI element encapsulated in the ABCs. For 
example, there are Menu Editors for menus, Scrolling List Editors for scrolling lists, etc. 
With these editors, a programmer can design the look and feel of an application’s GUI 
with graphical tools. The tools provide support for building user interfaces at several 
levels. At their simplest level, the ABEs enable the application’s menus, windows, dialog 
boxes and documents to be designed and rearranged until they look just right and present 
information to the user in the most intuitive manner. 
 
 The ABCs are also extendible. If you write a subclass of one of the ABC classes 
to add new GUI functionality, you may add your new class to those already available to 
the ABEs. This lets you not only add your new GUI element to future programs, but it 
also allows you to edit the attributes of the new class visually as you design user 
interfaces with the ABEs. We will show you how to add programmer-defined GUI 
elements in the following chapters.  
 
 The ABEs are entered by selecting the Edit Application... menu item. The first 
editor you’ll encounter is the Application editor, shown in Figure 14.2. This editor is the 
starting point for GUI design. It’s from here that you’ll enter the other editors for menus, 
windows and documents, as well as provide a name and program icon for your 
application.  
 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

241 

 
 

Figure 14.2: The Application editor 
 

 The Menubar editor (Figure 14.3) allows you to add individual menus to an 
application’s menu bar. By default, the application’s menu bar will be given a File menu 
and an Edit menu. If your program does not need to perform any more actions than the 
usual application menus provide, you can easily just use one of the pre-built menus listed 
in the scrolling list of menus of the Menubar editor. Otherwise, create your own menu 
from scratch or subclass one of the existing menu classes to build a more specialized but 
related menu. 
 

 
 

Figure 14.3: The Menubar editor 
 

 Individual menus are created and modified with the Menu editor, seen in Figure 
14.4. The specific menu items are added to each menu in the menu bar, along with an 
icon or keyboard command equivalent for the menu item, if desired. Submenus may be 
added to any menu item to form hierarchical menus. 

 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

242 

 
 

Figure 14.4: The Menu editor 
 

 Windows and dialog boxes are a little bit more involved than menus, but the 
Window editor (Figure 14.5) and its related editors help keep them relatively simple. At 
the topmost level of these editors is the Windows editor, which lists all available windows 
for your program. When a particular window title is clicked in this list, its size and 
position on the monitor screen are depicted in the editor window. Selecting that window 
opens up its View editor. 
 

 
 

Figure 14.5: The Window editor 
 

 When the View editor for an individual window is opened, a floating palette 
appears that contains window items such as controls and graphics that may be displayed 
in the window. Figure 14.6 shows the tools available on this palette. You can create your 
own controls, graphics or views by subclassing the ABC classes, then add it to these 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

243 

floating editor palettes to easily add it to future programs. In the upcoming chapters, we’ll 
create our own special Push Buttons and Views and add them to these palettes.  
 

   
 

Figure 14.6: The Window editor palettes 
 

 The window we are designing is displayed graphically in the View editor, shown 
in Figure 14.7. The controls, graphics and views of the floating palette are placed in the 
window by dragging their icons from the palette to the View editor’s representation of the 
window.  

 

 
 

Figure 14.7: The View editor 
 

 The final major editor is the Document editor (Figure 14.8), which is used to 
define new documents. We’ll return to this editor shortly when we discuss documents. 
 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

244 

 
 

Figure 14.8: The Document editor 
 

The Application Builder Editors as Action Designers 
 
 To the programmer, the Application Builder Editors behave very much like any 
other GUI design tool -- you drag icons of the GUI elements onto the screen and arrange 
them until they look nice. As useful as the ABEs are as visual tools for graphical user 
interface design, this is just the tip of the iceberg. The Application Builder Editors don’t 
just arrange GUI elements in a window or menu items in a menu -- they also help set up 
requests for action (method calls) to and between the classes that make the user interface 
so the GUI will perform as it should. That is, the ABEs define the view hierarchy and 
functional relationships between GUI objects as you design your application-specific user 
interface.  
 
 Let’s start with the Menu editor (refer to Figure 14.4). Note the button labeled 
“Menu Behavior”. What’s a behavior? Behaviors are simply the actions taken when a 
control or a menu is selected by the user. In other words, behaviors are the requests for 
action passed to the GUI element object or to another functionally-related object. We are 
requesting that the object perform the action by calling one of its class methods. We set 
up this communication between the classes by using the graphical Behavior editor, shown 
in Figure 14.9.  
 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

245 

 
 

Figure 14.9: The Menu Behavior editor 
 
 The ABE’s behavior editors give us a lot of flexibility in writing our application-
specific code. We don’t have to tailor our own methods to fit some rigid requirements of 
an application framework, such as only being able to write methods with fixed names or a 
fixed number and type of inputs to interact with the framework’s code. Behaviors instead 
make the framework adapt to our code! How is this possible?  
 
 In each Behavior Editor, we enter a name for the behavior and define and name a 
class method (either written by us or within the ABCs already) that will be called to 
accomplish the behavior. This specification of the method to be called when a user 
interface element is selected ensures tight integration between the Application Builder 
Classes framework and our own code. In fact, by clicking the Create button now, you 
could write the code for this new class method without exiting the editor, another 
example of how Prograph lets you create programs faster by integrating all of its program 
design tools. When we define the behavior, the Behavior Editor automatically creates an 
instance of a subclass of the class Behavior for us and places a reference to it in the GUI 
element’s object. There is a subclass of Behavior for each major user-selectable GUI 
element, including Menu Behavior, Window Item Behavior and Control Behavior. 
The Behavior classes therefore form the “glue” between the GUI element and the 
method we want it to call. 
 
 More than just naming the method to be called, the editor also allows us to set the 
number and type of inputs to this method. The Behavior classes do their work in concert 
with a set of classes derived from Behavior Specifier. The subclasses of Behavior 
Specifier include Window Specifier, Window Item Specifier, Menu Specifier, Menu 
Item Specifier, Class Specifier, Method Specifier, Attribute Specifier, Persistent 
Specifier and Value Specifier. Each subclass corresponds to a possible input data type 
for the method called as a behavior. Popup menus in the editor present us with a choice of 
the type of input, as well as some specific instances of these input type. Objects of the 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

246 

subclasses of Behavior Specifier are also created for us along with the Behavior class 
by the Behavior Editor when we define a behavior. The Behavior object contains as one 
of its attributes a list of these Behavior Specifier objects, one for each input to the 
method.  
 
 So between the Behavior Editor and the Behavior and Behavior Specifier 
objects it creates for us, we’ve defined both what method will be called when a GUI 
element is selected by the user and what inputs the method expects. What if we decide to 
change the method or its inputs? No problem -- the Behavior editor will take care of it for 
us. Most application frameworks couldn’t possibly do this. We’d have to change our code 
ourselves to account for even the slightest change in behavior of a GUI element. 
 
 How does the application actually handle all of this at run-time? When a GUI 
element is selected, its referenced Behavior object’s Do method is called (see Figure 
14.10). In the Do method, the name of the method to be called is retrieved from the 
Behavior object’s Method attribute, and a list of Behavior Specifier objects is retrieved 
from the Behavior object’s Specifiers attribute via the Resolve method. Resolve is a 
class method of Behavior Specifier (Figure 14.11) that finds the proper input objects, 
variables or constants referenced by each Behavior Specifier object by sending the 
value attribute of the Behavior object into an inject. Finally, the method named by the 
Behavior is called by the call primitive, which receives as input both the method name 
and a list of the method inputs. The call primitive also acts somewhat like an inject 
construct, in that doesn’t know the name of the method it will call until run-time. 
 

 
 

Figure 14.10: The Do method of the Behavior class 
 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

247 

 
 

Figure 14.11: The Resolve method of a Specifier subclass 
 
 As an example, Figure 14.9 shows that when the Quit menu item in the File menu 
is selected, a class method named Quit will be called as its behavior. This method expects 
one input -- a persistent called “TheApplication”, which contains an instance of the 
Application class (as shown by the selected input of the Quit method in that figure). In 
other words, this behavior sends a method call request through which the Menu class 
communicates with the Application class. The ABEs have let us set up interclass 
communication easily with a few clicks of the mouse.  
 
 Controls in windows, unlike menu items, have different behaviors that are 
specific to their type of user interface element. Many controls have actions only when 
they are clicked on with the mouse. These controls therefore have only one behavior -- a 
click behavior. Others perform actions either when they are clicked on or when their 
graphics must be refreshed. For example, a grid display (a 2-dimensional grid of text or 
icons) within a window might be redrawn if the window is inactivated then reactivated. 
Controls such as these have a draw behavior in addition to their click behaviors. The 
Behavior Editors for these two types of behaviors are accessed by selecting the Click 
Behavior... or Draw Behavior... menu items. 
 
 Other user interface elements must take advantage of additional behaviors. For 
example, text editing boxes might need to detect when the user presses a particular key 
and perform a special action. The Special Keys menu item allows the programmer to 
define which keys will be handled in this manner and define a behavior to do so for each 
of these keys (see Figure 14.12). 
 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

248 

 
 

Figure 14.12: The Special Keys editor 
 
 Data being displayed in a text editing box may be changed in its format before 
being displayed or after modification by the user. Changes in the value of the data might 
also affect other data in the program. To account for these possibilities, text editing boxes 
are given two important behaviors -- the Enter behavior and the Exit behavior (see Figure 
14.13). As their names imply, they allow for actions to be taken (messages to be passed) 
when the text editing box is first selected and when it is exited because the user clicks in 
some other user interface element. For example, the Exit behavior might call a method 
that will confirm that the text you’ve entered in the text editing box has the proper value 
for your application before it lets you exit the text editing box.  
 

 
 

Figure 14.13: The Edit Text Behavior editor 
 
 Note the third button at the bottom of the Edit Text editor in Figure 14.13. This 
button brings up a Text Filter editor, shown in Figure 14.14. Text filters are methods that 
are called to enforce that a specific type of data be entered by the user into the text editing 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

249 

box. Associated with text filters are a Rejection behavior -- the action to be taken when 
an incorrect data type or data outside of a given range is entered by the user. 
 

 
 

Figure 14.14: The Text Filter editor 
 
 Documents are just as easy to design as menus, windows and dialog boxes. The 
Document editor (Figure 14.15) helps define the interrelationships between the 
document, the window in which its data is displayed, the print layout for its hardcopy 
representation and the storage format for writing its data to a file. Mappings play an 
important role in these interrelationships. 
 
 The Document Editor contains several popup menus that help you define the 
classes that will be used to help the newly defined Document class perform its duties. For 
example, the popup menu entitled Data Class only lets you select subclasses of 
Document Data to serve as the class in which the document’s data is stored. The 
Window section of the editor contains a popup menu that lists all available windows in 
the program. The Print Layout section of the editor contains a popup menu that only lets 
you select the Print Layout class or subclasses of it that you might create. Finally, the 
File section determines the data file format in which to store the document’s data -- data 
file, object file, picture file, text file or styled text file. The data file requires you to write 
code to store the data item by item. Each of the other file types would be stored by the 
Document class for you automatically. They store the document’s data as text, styled 
text (text with formatting and styles such as italics or boldface), or pictures. The object 
file type is especially useful since it just saves (and later reads back) all of the attributes 
of the Document Data subclass as a whole. 
 

 
 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

250 

Figure 14.15: The Document editor 
 

 Mapping is simply a one-to-one link between each data item (a single variable or 
list) and the window element or print layout location that displays it. The Window 
Mapping editor is shown in Figure 14.16. In this editor, document data is associated with 
the particular window item that will present it to the user by selecting via pop-up menus 
the data attributes and the window items to display them. In addition, the programmer 
may select a class to implement the mapping between a document and its display 
window. The Window Item Mapping class is a special helper class that is provided for 
us in the ABCs, but we may also choose to use a subclass that we define to do the 
mapping instead.  
 

 
 

Figure 14.16: The Mapping editor 
 
 As a concrete example, let’s return to the definition and mapping of the document 
used in the Address Book example program of the first chapter. The document’s data was 
stored as attributes of a class named Addresses, shown in Figure 14.17. 
 

 
 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

251 

Figure 14.17: The Addresses class data 
 
 The document for the program was named Address List Document, and was 
implemented by the class of the same name. In Figure 14.18, the Document Editor is 
shown with the settings for the Address List Document, whose name is typed into the 
Name text editing box of the editor. At the top of the editor, we also see this document 
uses the Addresses class as its data class. In the Window section of the editor, we’ve set 
the Get Address Window as the window that will present the address data to the user. 
The Print Layout class of the ABCs will provide printing capabilities to the document, 
and by selecting the Object File setting in the File section of the editor, we have specified 
that we will save all of the contents of the Address object (all of its attributes) in files 
created by this application. 
 

 
 
Figure 14.18: Definition of the Address Document in the Document Editor 

 
 Although we’ve set which window will display our address data with the 
Document Editor, we must also explicitly specify how the data will be displayed in that 
window. We select the “Edit Mappings” button for the Window subset of the Document 
Editor to enter the Window Mapping Editor (Figure 14.19). Here we associate each 
attribute of Address to the Window Item of the Get Address Window that will display 
the attribute’s data. The Add button of the editor creates a new mapping. We then 
highlight the new mapping in the scrolling list of mappings at the top of the editor and 
define the mapping in the Selected Mapping section of the editor. First we specify the 
class that will perform these mappings. By default, only the Window Item Mapping 
class can be selected. Next we select the name of the Address attribute to be mapped 
from the Attribute pop-up menu, which lists all of the attributes of that class. Finally, we 
choose the window item that will display the data with the Window Item pop-up menu, 
which lists all of the user interface elements in the Get Address Window. 

 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

252 

 
 

Figure 14.19: Definition of the mapping of the Address Document data into 
the Get Address Window with the Window Mapping Editor 

 
 Printouts of the document data are defined with the Print Layout Editor (Figure 
14.20), which lets us specify the appearance of a printout of a single address. We can also 
add a header or footer to the page. Headers and footers may contain text or graphics of 
our own design, or the current date or a page number. These items may be added to the 
header or footer using palettes similar to those of the View Editor. Instead of showing 
you these editors, we’ll move ahead to the Page Editor, which lays out the appearance of 
the main body of the printed page. 
 

 
 
 

Figure 14.20: Definition of the printout of the Address Document data with 
the Print Layout Editor 

 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

253 

 The Page Editor, shown in Figure 14.21, is where the physical arrangement of the 
data on the page is planned. We just draw graphical elements onto the page layout from a 
palette just as we did to define a window. 

 

   
 

Figure 14.21: Arranging the layout of the Address Document printout with 
the Page Editor 

 
 Just as the address data of the document must be mapped to each control of its 
display window, we must also map the data’s correspondence to each field of the printout 
with the Print Layout Mapping Editor (Figure 14.22). When the user selects Print from 
the program’s File menu, the data of the current address is stuffed into each of these 
fields and printed out on a page. 

 

 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

254 

 
Figure 14.22: Mapping the Address Document data with fields of the 

printout with the Print Layout Mapping Editor 
 

 Before we finish our discussion of behavior editors, we should mention one 
special behavior called the Initial behavior. This behavior, set in the Application editor 
(see Figure 14.2), is an action taken when any application first starts up, even before any 
windows are opened. Initial behaviors lets us do things like initialize variables and set 
default values from those stored in a file, or set up interprogram communication. 
 
 The Application Builder Editors are an advanced means of managing a complex 
class library -- powerful tools for defining interclass messaging with a minimum of effort. 
What’s probably more important to the programmer is that after using the ABEs, the 
programmer has to write very little program code to fully integrate the user interface into 
an application. All that essentially remains is getting the data to be presented and 
manipulated into and out of the user interface. As an example, if a dialog box is to be 
presented to change program settings in an application without documents, the only user 
interface code that the programmer has to write is code to put the values of the settings 
into the GUI elements (text editing boxes, check boxes, radio buttons, popup menus, etc.) 
when the dialog box is first presented, then write the code to retrieve these values when 
the dialog box is dismissed. If the dialog box were part of a document-based program and 
were displaying data from the document, even this minimal amount of code-writing 
would be unnecessary, since the Document and Mapping classes themselves would 
handle setting and getting the dialog box’s values. 
 
Summary 
 
 In this chapter, we’ve reviewed the underlying workings of the Application 
Builder Classes and their associated Application Builder Editors. These tools set up the 
complex interclass messaging protocols necessary for managing powerful and flexible 
user interfaces. What this means for you -- the programmer -- is that less work is required 
on your part to design and manage a professional-looking and commercial-quality GUI. 
 

• The ABCs are a special application framework -- a code library for handling 
user interfaces and the main event loop of a typical application. Most of the 
code needed for a program is embodied in the application framework. The 
programmer is responsible for only task-specific code. 

 
• The ABEs are object editors for constructing a user interface. From the point 

of view of the programmer, all that’s done is dragging and arranging iconic 
representations of the GUI elements onto the screen, then defining the 
methods to be called when these elements are selected by the user. Behind the 
scenes, the editors automatically create objects from the appropriate ABC 
classes for you and interconnect these objects so that they intercommunicate 
properly.  

 



Visual Programming With Prograph CPX       S.B.Steinman & K.G.Carver 

255 

• Each GUI element’s visual editor not only lets you manipulate all aspects of 
the appearance of that element (for example, a menu item may or may not be 
highlighted or checked, it could be displayed in a variety of fonts, sizes or 
style, or may contain icons, etc.), but also lets you set behaviors for that 
element.  

 
• Behaviors are the actions taken when a GUI element is selected by the user. It 

is defined by a programmer-defined method to be called and the number and 
types of that method’s inputs. Special ABC classes derived from the parent 
classes Behavior and Specifier work behind the scenes to communicate 
between the ABC user interface code and your own program code. 

 
• Documents are representations of task-specific program data that may be 

displayed in a window, saved to a file or printed. The Document class and the 
Document Editor mediate these processes, while Mapping classes 
intercommunicate between the document and other classes responsible for the 
display of data on the screen or on a printed page as well a file access. 


