
Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

274

16. Applying the ABCs -- Part 2: Son of Calculator

Overview

 The Calculator program of the previous chapter was short and elegant. Its
simplicity made it fast to program, but there was a price to be paid for its simplicity -- a
tight coupling between its calculator functions and the representation of the calculator its
user interface. Such tight coupling makes it harder to modify, extend, or reuse the
calculator code, as well as modify the user interface.

 In this chapter, we’ll rewrite the Calculator program by splitting its core functions
into an independent class not derived from the Application Builder Classes. While this
will add a few more methods to the program, its benefits are to allow us to reuse the
calculator code in other programs and to subclass the class that implements the calculator
in the future to easily add more features. The small amount of extra programming we
have to do now will therefore save us a ggreater amount of programming in the future.
This is one of the real benefits of OOP.

The Calculator Program -- Version 2

 Our second Calculator program will appear like the window shown in Figure
16.1. You might notice that we’ve also added a new button to the calculator -- ± -- which
will change the sign of the currently displayed number of the calculator.

Figure 16.1: The Main Window of the Calculator program

 The class that will make this program work is a class named Calculator, which
we create and place in a section also called Calculator (Figure 16.2). Most of the code
that we’ll have to write for this program will be confined to this class alone. The
remainder of the program code will call these methods to do the real work of the
calculator.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

275

Figure 16.2: Classes of the Calculator Workspace section

 To easily access a Calculator object at several places in our program, we will
place an instance of the Calculator in a persistent called The Calculator, also in the
Calculator section (see Figure 16.3).

Figure 16.3: The ‘The Calculator’ persistent

 While building the user interface of the program, two new classes will be added to
the Calculator Workspace section (see Figure 16.4). The first new class for our program
will be Calculator Window, which is created by the Application Builder Editors for us
when we define the window’s view. The second is Calculator Application, which really
is just a renamed version of the Starter Application subclass of Application that is
supplied with the ABC Starter Application project. So, as you can see, we really won’t
have to write much code at all to handle the user interface.

Figure 16.4: Classes of the Calculator Workspace section

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

276

 Even though some of the code of this program will be similar to that of Chapter
15, the design of the program and therefore much of its code is different enough that we
might as well build this program from scratch by opening the ABC Starter Application
project that comes with the Prograph development system. Save the new program project
under the name “Calculator Project” and the new workspace section of the program as
Calculator Workspace” (but keep these sections in a different folder than the identically-
named sections of the previous program, so the Prograph environment can differentiate
between them).

Designing the User Interface of the Calculator Program

 It’s time to begin building the user interface. Select the Edit Application menu
item and enter the Application Editor. Once again, enter “Calculator” for the name of the
program and ‘Calc’ as the signature for a Macintosh application.

 Now open the Menubar Editor. As we did in the first Calculator program, we will
remove the Basic Edit menu and leave our program with only a File menu. The File
menu’s single Quit menu item will once again be sufficient for our program. Remember
that the default behavior of this menu item is to call the Quit method of the Application
class. Our program now has a fully functional menu without any additional programming
on our part.

 Let’s proceed with the main display window of the calculator program. Return to
the Application Editor, then enter the Windows Editor.

 When the Windows Editor opens, select the New Window menu item to define
our new window. Enter the name Calculator Window when prompted for the name of the
window (Figure 16.5). The new Calculator Window will now be added to the list of
available windows for our program.

Figure 16.5: Entering the name for the Calculator Window class

 Select the Calculator Window from the list of available windows and enter the
View Editor for the window. Arrange the Calculator Window view by dragging one text-
editing box (for the numerical display of the calculator) and 18 push buttons (for the
calculator keys) from the Controls palette onto the View Editor window. Resize and
position them as shown in Figure 16.6.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

277

Figure 16.6: Main View of the Calculator Window with added push buttons

and text-editing box

 The push buttons will all need to be given an appropriate name and label by
selecting each button in turn and entering its Push Button Editor (Figure 16.7 shows the
data for the Clear button of the calculator). For each number-entry key of the calculator,
use the appropriate number for each button’s title (that is, “1” through “0”) and the text
equivalent of the number for each key’s name (for example, “Four” for the “4” key). The
operation keys are named for their operations (Add, Subtract, Multiply, Divide) and titled
with the mathematical symbol for their operation, while the ± button is named Negation.

Figure 16.7: Push Button Editor

 The Text object for the numerical display of the calculator should be given the
name Number Display and an initial text display of 0 (see Figure 16.8).

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

278

Figure 16.8: Text Editor

 Let’s add a background to the Calculator window. Select the Background... menu
item to bring up the Background Editor, shown in Figure 16.9, and select a lightly dotted
background pattern and medium gray background color.

Figure 16.9: Background Editor

 The final step in defining the appearance of the Calculator Window is defining the
window characteristics. Select the Window Specification... menu item to bring up the
Window Editor (Figure 16.10), and select a rectangular window with a title bar and a
close box. Now the finished Calculator window should look like Figure 16.1.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

279

Figure 16.10: Window Editor

 Now that the Calculator window looks like a calculator, let’s make it act like one
by adding behaviors to its keys via the Behavior Editor. The entries for the behavior of
the Clear calculator Push Button are shown in Figure 16.11. This button will call the
Clear method of the Calculator class. The method’s sole input is The Window, in other
words, an object of type Calculator Window. This makes the Clear method a class
method of Calculator Window.

Figure 16.11: Click Behavior for the calculator’s Clear button

 The behaviors of the “.”, “=“ and “±” push buttons are defined with the same
method input (The Window), but are given method names of Decimal, Equal and
Change Sign, respectively. Each number key of the calculator is given a behavior in
which the method name is the text form of the number that labels the key and which has
only one input -- The Window. Similarly, the operator keys each have a behavior with a

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

280

method name that describes the mathematical operation that the key will carry out and a
single input for the The Window (see Figure 16.12 for the “+” button).

Figure 16.12: Click Behavior for the calculator’s + button

 The behaviors of the digit push buttons are defined with the same method name
(/Digit), but an extra method input -- a constant -- is given a different value for each digit
key. The value of the constant is simply the number of the digit push button -- 1 for the
“1” key, 2 for the “2” key, and so on. In this manner, all of the digit push buttons reuse
the same behavior method code. Figure 16.13 shows the behavior definition for the “9”
key of the calculator.

Figure 16.13: Click Behavior for the calculator’s ‘9’ digit button

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

281

 That completes the design of the user interface for our second version of the
Calculator program. So far, it’s not very different from the first version of the program. In
fact, there are really only one significant difference in the user interface. Instead of
creating special subclasses of Push Button to handle digit input, mathematical operators,
and so on, we’ve just used the generic Push Button included with the Application
Builder Classes. The behaviors of the buttons will take advantage of the new Calculator
class that will handle the tasks of the hand-held calculator. The real changes in our new
calculator program will come now as we write the code for the Calculator program.

Writing the Calculator Program Code

 For this version of the program, we’ll change four methods included in the ABCs
to modify their function by overriding them. After this, we’ll design the Calculator class
and write the class methods that perform the calculations for this program. Finally, we’ll
write the click methods for the Push Button objects in the Calculator window.

 The Application class in the Calculator Workspace section contains a class
method named About. This method is used to display an About Box on the screen, which
presents to the user information such as the program version, author and copyright.
Rather than modify code within the ABCs themselves, we create another About method
in the Application class’ subclass -- the Calculator Application class. This second copy
of the About method will then override the original copy in the parent class. When the
program runs, it will call the About method in the child class -- the one that we’re about
to change. The overriding About class method will just display the message “Calculator
program by Dr. Scott B. Steinman”, as shown in Figure 16.14.

Figure 16.14: The overridden About method in the Calculator Application
subclass of Application

 We will also override some class methods of the Window class to make them
perform specific actions for our Calculator window. The Open method of the Window
class sets the position of a window on the screen, then opens the window and activates it.
While we’d like our Calculator Window to do this as well, we’d also like it to do a little
bit more work when it’s opened. We’d like it to initialize the calculator before the user
works with it. In the Calculator Window subclass created by the Application Builder
Editors, we’ll add a method named Open to override that of the Window class. Copy the

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

282

Window class’ Open method into the Calculator Window subclass and modify its first
case as shown in Figure 16.15. The second case, which brings an existing window to the
forefront of the screen, will be left unchanged.

Figure 16.15: The overridden Open class method of the Calculator Window

class

 In the Calculator Window subclass’ Open method, we first call its superclass’
Open method, which will open the Calculator Window before we perform our own
additional actions. Then we retrieve the Calculator object stored in the TheCalculator
persistent and call the Calculator’s initialization method and clear its numerical display’s
memory. By overriding the Open method, we get the Calculator object automatically
initialized every time the program is started.

 The last two methods to be overridden are the same ones we overrode in the first
version of the Calculator program -- the Window class’ Close and Process Key
methods. Cut and paste these from the parent Window class into the Calculator subclass
to give us a starting point for modifying them. The Close method, as before, will quit the
application when the window is closed when the user clicks in its close box (see Figure
16.16).

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

283

Figure 16.16: The overridden Close class method of the Calculator Window
class

 The Process Key method shown in Figure 16.17 differs from that of the previous
version of our program. It retrieves the current keypress and sends it to a local method
named valid key?. In the overridden Process Key method, we use only the first two
nodes out of the four that the parent class’ Process Key method had, but don’t delete the
other two nodes -- the code that calls the Process Key method still expects to find these
inputs.

Figure 16.17: The overridden Process Key class method of the Calculator

Window class

 The first case of the valid key? local method, which handles digit input only, is
shown in Figure 16.18. The valid key? method has two inputs -- an instance of the
Calculator Window subclass of Window, and the character (“0”-”9”) of the key that was
pressed. This method converts the keypress’ character to its corresponding digit, then
calls the Digit method of the Calculator class. Finally, the Display New Number method,
which will present the result of the Digit method in the Calculator window. We’ll discuss
these methods shortly.

Figure 16.18: The first case of the valid key? local method

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

284

 The remaining cases of valid key? handle the decimal point key, the operators, the
equal key and the clear key. Each key, other than the clear key, is serviced with a case
similar to that shown on the left-hand side of Figure 16.19. For each of these cases, the
character corresponding to the key’s label is tested for, then the appropriate class method
of Calculator called. The case for the clear key, shown on the right-hand side of the
figure, tests for whether the user pressed either ‘c’ or ‘C’ on the keyboard. Here we
remove the control normally placed on the = primitive, and add a node to extract its
Boolean output, which indicates the success or failure of the logical test. The outputs of
both = tests are sent to an or primitive. If this test fails, the local method is terminated.

Figure 16.19: Additional cases of the valid key? local method

 Now let’s work on the Calculator class itself. In this new version of the
Calculator class, we want to separate the code of the Calculator class from any code
dealing with the Calculator window or the window’s parts. One new attribute and several
redesigned class methods will reflect this new approach to the Calculator class.

 The class has four attributes, shown in Figure 16.20, three of which correspond to
the attributes of the Calculator class of the first version of this program -- Left Operand,
Operator and Clear?. Notice that we’ve added one more attribute to the Calculator
class -- Current Number -- which holds the value of the number currently being worked
on by the calculator. In the previous version of the calculator program, we retrieved this
value from the numerical display text-editing box of the Calculator window. In our new
Calculator class, we store the current number within the Calculator class.

Figure 16.20: Attributes of the Calculator class

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

285

 The class methods for the Calculator class (see Figure 16.21) fall into several
categories. First, a method is provided for number keys of the calculator to attach a digit
to the right of the current number stored in the Current Number attribute (and which
also will be displayed in the numerical display text-editing box of the Calculator
Window). Secondly, there are methods for each of the operations of the calculator --
addition, subtraction, multiplication, division and changing the sign of a number. Third,
there is a method to handle typing of a decimal point into a number to separate the integer
and fractional portions of the number. Fourth, there is the Calculate method that
determines the results of the calculation. Fifth, methods already exist for initializing the
attributes of the Calculator class and clearing the Current Number and display to zero.
Finally, methods are provided to store the operands of the calculations in the Current
Number and the operation to be performed on them in the Operator attribute.

 The first thing you’ll notice in the new Calculator class is that its class methods,
unlike those of the previous chapter’s Calculator class, no longer take an object of type
Calculator Window as an input. The second thing you’ll see is that several of these
methods return the value of the current number, so that it can be passed on to methods of
the Calculator Window class, which will then display the number in the Calculator
window by itself. The Calculator class no longer depends upon elements of the user
interface to do some of its chores. The Calculator and Calculator Window classes now
work independently. This independence makes it easier to modify or subclass each of
these classes for future programs.

 Although it is organized completely differently than the classes of the previous
Calculator program, it doesn’t use more methods than did its predecessor. Some extra
methods will be added to the Calculator Window class, but they are quite short and
simple. What this boils down to is that changing the program design to be more reusable
doesn’t mean a sacrifice by adding a lot of extra work programming.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

286

Figure 16.21: Class methods of the Calculator class

 The Initialize method is called when the Calculator Window is first opened (see
Figure 16.22). It simply sets the initial state of the Calculator class’ attributes.

Figure 16.22: The Initialize method of the Calculator class

 The Clear method (Figure 16.23) performs the same as that of the first version of
the program, except that it places the value 0 in the Current Number attribute of
Calculator rather than enter it into the text-edit box of the Calculator Window.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

287

Figure 16.23: The Clear method of the Calculator class

 The numerical keys of the calculator all perform essentially similar actions.
Therefore, they all share the Digit method as their click behaviors. The Digit method
(Figure 16.24) begins by getting the current number of the calculator via the Get
Existing Number method, then appends the digit pressed (or typed) by the user with the
Set New Number method.

Figure 16.24: The Digit method of the Calculator class

 The Get Existing Number method (Figure 16.25) is the analogue of the get
existing value local method of previous chapter. This method checks if the currently-
displayed number should be cleared and returns a zero if it should. If not, the current
number is returned.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

288

Figure 16.25: The Get Existing Number method of the Calculator class

 Set New Number (Figure 16.26), like the new value local method of the first
version of the Calculator program, checks the number now being displayed by the
calculator. If it’s currently zero, it passes through the digit pressed by the user so that it
will replace the zero in the Current Number attribute. If the Current Number is not
zero, the digit pressed is added to the number. The current number and the digit are first
converted to character form, then the digit is added to the end of the number’s string
representation with a “join” primitive. The new number string is then reconverted back
into a real number, then stuffed back into the Current Number attribute.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

289

Figure 16.26: The Set New Number method of the Calculator class

 Just as the digit keys all share a single method to perform similar actions, the class
methods that make the operator keys function are all very similar since they share
common actions and therefore can share common code. In Figure 16.27, we see the Add
method. This method calls two other methods -- Calculate and Set New Operator.

Figure 16.27: The Add method of the Calculator class

 The new versions of the Calculate and Set New Operator methods are shown
in Figures 16.28 and 16.29. The Calculate method checks if the Clear? flag is set. If so,
the current number is returned. Otherwise, the Operator attribute is cleared and the
Equal method, which performs the actual calculation, is called.

 The Set New Operator method sets the value of the Operator attribute with the
new operator, then places the Current Number into the Left Operand attribute in
preparation for the number to be entered as the second operand for a calculation.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

290

Figure 16.28: The Calculate method of the Calculator class

Figure 16.29: The Set New Operator method of the Calculator class

 The Equal class method, shown in Figure 16.30, is the workhorse of the
Calculator program, since it is responsible for the actual calculations of the program. It is
quite similar to that of its predecessor program except for its inputs and outputs. The
Equal method’s compute and strip trailing zeros local methods, also similar to their
predecessors, are depicted in Figures 16.31-16.32.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

291

Figure 16.30: The Equal method of the Calculator class

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

292

Figure 16.31: The compute local method

Figure 16.32: The strip trailing zeros local method

 The last method of the Calculator class is the class method Reset Parameters
(see Figure 16.33). Once again, it is identical to that of its predecessor except for its
inputs.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

293

Figure 16.33: The Reset Parameters method of the Calculator class

 At this point, we can add the remainder of the new methods to the Calculator
Window class. These new methods are called as click methods for the Push Buttons of
the Calculator window. They act as coordinators of the actions of the calculator by
requesting actions from the Calculator class, then displaying the results in the Calculator
window. Due to the similarity of their actions, you’ll find that these methods are all very
similar in content.

 The Digit method of the Calculator Window class (see Figure 16.34) simply
requests that the Calculator class’ Digit method add the pressed digit to the end of the
current number, then it displays the new number in the Calculator window’s text-editing
box.

Figure 16.34: The Digit method of the Calculator Window class

 The operator -handling methods (Add, Subtract, Multiply, Divide, Change
Sign), as well as the Decimal, Equal and Clear methods, are all alike in their actions --
they request that the Calculator class’ corresponding operator methods do their thing.
Figure 16.35 shows the Add method of the Calculator Window class as an example of
how the operator methods work.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

294

Figure 16.35: The Add method of the Calculator Window class

 Our new Calculator program is now complete. What have we gained by rewriting
it? Let’s say we wanted to reuse the code of the calculator program, or modify it, or add
new calculator functions. In the previous version of the program, the workings of the
calculator were intimately tied to how the calculator’s Push Buttons worked. If you
wanted to write another program that acted like a calculator, you’d have to add these
Push Buttons, even if you didn’t want to use Push Buttons to model the calculator. If you
just wanted to add calculator-like functions to another program without also including the
Calculator program’s user interface, you’d be in trouble. Changing the inner workings of
the calculator would also be difficult since you’d have to directly modify each individual
Push Button subclass as well. Finally, if you wanted to add new functions to the
calculator, it would require making new subclasses of Push Button, further increasing
the ties between the calculator workings and the user interface.

 In the new version of the Calculator, we’ve eliminated the dependencies between
the workings of the calculator (in the Calculator class) and the representation of the
calculator in the user interface (in the Calculator Window class). The tasks of the
calculator are handled by the Calculator class alone, not user interface classes. This is
desirable for three reasons: First, it makes it possible to experiment with how the
calculator works if it’s encapsulated into its own class. You can change the workings of
its methods and not “break” a program which uses the class. Second, it enables you to
reuse the calculator and add its function to another program by adding the Calculator
class to that program. Third, it makes it easier to extend the usefulness of the calculator
by subclassing the Calculator class and adding new functions to it (like trigonometric
functions or financial functions) or changing how it works (like using scientific notation
for numbers). Such flexibility is only possible with independent, uncoupled classes like
we’ve constructed in this chapter.

Summary

 Although it’s easy to add user interfaces to programs with the Application Builder
Classes and Editors, the programmer has a fundamental choice to make when doing so.
There are two possible ways to build the program:

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

295

1) Subclassing the user interface classes of the ABCs and adding class methods to
them to perform the application-specific tasks.

2) Creating a separate application-specific class that performs these tasks and
whose class methods are called as behaviors by the user interface elements.

 Which approach should you use? This depends upon how important it is to reuse
the code. If the program is a “one-shot” application -- used only for a single task that is
unlikely to change in the future -- the first approach may make sense because it takes less
time to get the program up and running. However, if code reuse is important for future
programming projects, the flexibility of the second approach becomes more important.
But don’t take our word for it -- try both approaches yourself and see which best suits
your programming style.

