
Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

143

10. Applying OOP with Prograph -- Classes

Overview

 Now that we’ve reviewed the background theory of object-oriented programming,
it’s time to put OOP into practice with Prograph. In this chapter, we’ll show you how to
create some simple classes and use objects in Prograph programs. The next few chapters
will build upon this knowledge to construct more complex classes and take full advantage
of OOP. The concepts discussed in this section will prove to be very important when we
outline how to add a standardized user interface to our programs using the Application
Builder Editor and Classes in Chapters 14 through 17. Luckily, Prograph makes object-
oriented programming easy to use.

Creating Classes with Prograph

 Let’s start with an example that will demonstrate just how easy it is to construct
and use classes -- a version of the Car class that we discussed throughout Chapter 9. This
example, although not very practical for the programs you’ll most likely want to write,
will demonstrate many of the principles of using OOP with Prograph. We’ll use a subset
of the possible properties and actions that a real car could have, as shown in the Car class
diagram of Figure 10.1.

class Car

speed
direction
gear

engine
tires
owner

Ignition
Shift Gears
Accelerate
Brake
Stop
Turn

Figure 10.1: Attributes and class methods of the Car class

 Create a new project named Car project, and a section named Car. Open the Car
section’s Classes window, then create a new program element. Name this element Car,
as shown in Figure 10.2. Congratulations! You’ve just created your first class -- a
definition of how an object will be formed.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

144

class Car {
public:
 short someData;
 void MyCode(void);
};

Figure 10.2: The divided icon of the Car class reflects the class’

containment of both data and code. The equivalent C++ code is also
shown.

 Notice that the class icon is much different than the other Prograph program
element icons we’ve seen so far. The class icon is divided in half. This reflects the dual
nature of classes -- they contain both data and code. The left side of the icon has a
triangular symbol that represents the class’ attributes (its data), while the stacked
rectangular symbol on the right side of the class icon represents the class methods (its
code). To construct a fully-functioning class from which practical objects may be made,
we must define both the class’ attributes and class methods.

 If you examine the C++ language class definition in Figure 10.2, you’ll find that
it’s much less obvious where data and code are being declared -- the declarations look
similar at first, and both code and data are declared in the same place in the class
definition. This requires the programmer to examine the source code very carefully. In
Prograph, we define attributes and class methods in separate windows, which reinforces
their separate roles within the class. Prograph’s visual nature helps us grasp class
definitions easier than does textual programming.

Attributes

 We’ll start by defining the attributes of the class. Click on the left-hand side of the
Car class icon. A window entitled Car will open (see Figure 10.3), displaying a triangular
attributes symbol (like on the left side of the class icon) in its title bar. The data elements
of the Car class will be defined here.

 Note that the attributes window has a horizontal line running across it. This line
subdivides the window into two attribute regions. The bottom region will contain its
instance attributes -- those attributes whose values may be different from one object of
this class to another. The top region will be used for its class attributes -- data elements
whose single value is shared by all objects of this class. Class attributes are the
equivalent of C++’s static class members. We’ll return to a discussion of class attributes
later in this chapter. For the moment, let’s focus on the Car class’ instance attributes.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

145

Class Attributes
region

Instance Attributes
region

Figure 10.3: Attribute window for the Car class

 Click once, while holding down the option key, inside the instance attribute
region of the window (below the line in it). A triangular symbol will appear that denotes
an attribute -- a data element of this class. Give the attribute the name speed.

Figure 10.4: Creating a new attribute for the Car class

 This attribute will hold the current speed of the Car in miles per hour, so speed
should be a real variable. Attributes are created with a default type of NULL, so we must
define the attribute’s data type by opening its Change Value window. Choose real from
the pop-up of data types. If you widen the Car attribute window, you’ll see the value of
the speed attribute displayed in it (see Figure 10.5).

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

146

Even though we are discussing the definition of an attribute’s
data type, there is actually no way to ensure that the attribute
remains that data type! Prograph is an untyped programming
language. That is, its variables, persistents and class attributes
can hold any data type during program execution, and can even
change data types! So when we talk about defining the data type
of an attribute, we are really only specifying the attribute’s
default data type and value, which could change later in the
program. If we want the attribute to always be a particular fixed
data type, we must perform data type checking whenever we set a
new value for the attribute, and only set the new value if it’s the
correct data type. Otherwise, we may have to change the data
type to the correct type (typecast it) before setting a new data
value.

 In C++, you must initialize class attributes in special methods called constructors;
in Prograph, such initialization methods are needed less often since you can initialize data
within the class definition itself. When an object is created from this class, its data will be
initialized to the values you have set, automatically.

Figure 10.5: Displaying the value of the speed attribute

 Define the remaining attributes of the Car class as shown in Figure 10.6, using
the appropriate data type (real, integer or string) for each attribute’s default value.

Figure 10.6: The attributes of the Car class

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

147

 The attributes of our minimal Car class have now been fully defined. These
include attributes that describe the traits or parts of the Car -- the tires and engine that
may make one instance (object) of the class unique from all other instances. Likewise, the
owner of the Car may differ for each instance. The attributes also contain state variables
that define the current status of the Car, such as its speed, direction, and current gear.
Each Car possesses these attributes so that we can use several Cars in a program
simultaneously, each one of which can be driving at a given speed in a given direction.

Class Methods

 While the attributes of a class give it the properties that we desire from the class,
it is the class methods that make the Car class perform the way it should. In the case of
the class, our class methods will carry out actions that we expect from a car such as
turning, accelerating, braking and stopping. Let’s create and define some of these class
methods.

 Double-click on the right side of the Car class icon. A window will open entitled
Car but also containing a method icon in it title bar. Create a method icon and name the
new method Stop. This method, which can be called only by objects created from the
Car class, will be called when we want to slow down a moving Car.

Figure 10.7: The Stop class method of the Car class

 Open the Stop class method’s case window. Notice that the window’s title shows
both the class name (Car) and the name of the method called (/Stop), as seen in Figure
10.8.

Figure 10.8: The case window of the Stop class method

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

148

By The Way...

The “/” between “Car” and “Stop” is not there simply to
separate these two words. It has a symbolic meaning as well.
Because class methods and Universal methods can have the same
name, there must be a way to differentiate them when calling a
method to be executed. When an operation has a leading “/”
character, it signals Prograph that a class method is being called.
The “/” is shown in the class method’s case window as a visual
cue for us to remember the “/” when we call the class method.
We’ll have more to say about this later.

 Complete the Stop class method’s case window as shown in Figure 10.9. The
C++ language version of the Stop method is shown in the figure as well. Note that in
C++, we can specify data members as being “public” or “private”. Public data can be
accessed directly, while the access of private data is restricted. While data access
restriction is quite useful, the current version of Prograph CPX does not have such a
mechanism -- all attributes are public and therefore directly accessible to all users of the
class, as well as to all subclasses derived from the class. Perhaps future versions of
Prograph will address what is one of the few shortcomings of Prograph. At present,
however, you can at least hide some of the code of your classes (but not its data) by
removing their source code before distributing them with the Make Execute Only option.

class Car {
public:
 void Stop(void);
private:
 float speed;
};

void Car::Stop(void)
{
 speed = 0.0;
};

Figure 10.9: The completed Stop class method with its C++ language
equivalent

 The Stop class method simply sets the value of the speed attribute to 0.0. How
do we do this? Look at the items in the Opers Menu. One such item looks like this:

Figure 10.10: The Set operator menu item

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

149

 This item converts a simple method into a Set operator which, as its name
suggests, sets the value of the attribute that has the same name as this method. In the Car
class’ Stop method, we call a set operator labeled speed to give the speed attribute a
value of 0.0.

Warning!

Prograph is case-sensitive just like C++. This means that naming
the first get method of Figure 10.11 “Gear” instead of “gear” will
produce an error, since “Gear” and “gear” will be interpreted as
signifying different attributes.

By The Way...

Note that the input and output bars of the Stop method each have
one node. The input node expects that an object of type Car is
fed into the method. The output node returns the Car object from
the method. Why do we need to do this? Actually, we don’t need
to do it. But writing class methods in this manner has one strong
advantage. It allows us to “string together” many calls to the
class methods of the Car class, feeding the Car object into the
first class method call only. All subsequent class method calls
will just “pass along” that same object. We’ll show you how this
works a little later in the chapter.

 Create two more class methods -- Brake and Accelerate. Complete the
Accelerate class method’s first case as shown in Figure 10.11. This class method is
called when you want to increase the speed of the Car as it drives, just as stepping on the
gas pedal of a real car would do.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

150

class Car {
public:
 void Stop(void);
 void Accelerate(
 float newSpeed);
private:
 float speed;
 char gear[10];
};

void Car::Accelerate(
 float newSpeed)
{
 if (!CheckIfParked())
 DoCase2();
 else if (!CheckSpeed())
 DoCase2();
 else speed = newSpeed;
};

Figure 10.11: First case of the Accelerate class method and its C++
language equivalent

 The code of the Accelerate class method first enters a local method named
Check if parked (see Figure 10.12) which, as its name suggests, checks whether or the
Car is in the “park” gear by reading the value of the gear attribute. After all, you can’t
speed up a car when it is not in “forward” or “drive” gear. If you try to do so, a warning
message is presented.

Figure 10.12: The Check if parked local method

 The value of the gear attribute is read with a Get operator. Get operators are the
opposite of Set operators -- they retrieve the current value of an attribute of a class. They
are created from simple operators by means of the Get item in the Opers Menu, shown in
Figure 10.12.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

151

Figure 10.13: The Get operator menu item

 What’s that strange control on the match test in the Check if parked local method?
This is a special control called a “Fail” control (also shown in Figure 10.14). Let us
explain why this particular control is needed. What if we had placed a regular “next
case”, “terminate” or “finish” control on this match? When the match succeeded (that is,
when the value of gear was equal to “Park”), the second case of the Check if parked
local method would execute and an error message would be presented. Fine -- that’s what
we want. But what happens next? The Accelerate method will continue to execute its
second local method, then reset the value of speed just as if nothing had happened
within the Check if parked local method. The Accelerate method is unaware of the
results of the match test within its local method.

Figure 10.14: A Fail control on a match test

 Clearly, we need a way to tell the Accelerate method that the Check if parked
local method’s match test succeeded. This is where the “Fail” control comes in. It not
only makes the local method change its flow according to its outcome, but it also signals
the method that calls the local method about the result of its match test. If the match test
is set off (in this case, if it succeeds since the test has a check mark in it), the “Fail”
control is triggered. In this manner, the result of the match is propagated from the local
method to the method that called that local method.

 By attaching a “next case” control to the local method’s operator icon in the
Accelerate first case window (see Figure 10.11), we can make the Accelerate method
change its course of action depending upon the outcome of the match within the Check if
parked local method. If the match test succeeds (that is, the gear is indeed set to “Park”),
the second case of the Check if parked local method will execute to display a warning
message. The success of the test will also trigger the “Fail” control. Next, the “next
case” control on the Check if parked local’s operator icon will sense that the “Fail”
control was set off. It will then make the method enter its own second case (shown in
Figure 10.15), which will skip the Check speed local and the speed Set operator. The
final outcome is that the success of the match test within the Check if parked local
method will cause the speed attribute to be left unchanged.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

152

Figure 10.15: Second case of the Accelerate class method

 After this, the Accelerate method determines if the requested new speed really
exceeds the current speed of the Car, using a similar Get operator labeled speed to read
the current value of the speed attribute (Figure 10.16). If this test succeeds, the
Accelerate method will finally set the value of speed to the new speed using a Set
operator.

Figure 10.16: The Check speed local method

 Proceed now to the Brake class method (Figure 10.17). This method is very
similar to the Accelerate class method, except that the speed of the Car is decreased
rather than increased. First, the requested new speed is compared to the current value of
the speed attribute. If it is truly lower than the current speed, the value of the speed
attribute is reset to its new value.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

153

Figure 10.17: First case of the Brake class method

 If the requested speed is in fact higher than the current speed, a second case is
entered (Figure 10.18) in which a warning message is presented to the user.

Figure 10.18: Second case of the Brake class method

User-defined Get and Set Methods

 In each of the above class methods, we simply set the value of the speed attribute
with a new value. This is a pretty straightforward process. But sometimes we cannot just
set an attribute to a new value. An example of this is the direction attribute of the Car
class. The direction of the Car is encoded as an integer number from 0 to 359, as in the
number of degrees in a circle. A value of 0 represents North, 90 represents East, 180 is
South and 270 is West. This representation facilitates the process of turning the Car,
since turning to the right would simply involve adding 90 to the current value of Car,
and turning to the left would mean subtracting 90. Unfortunately, this simple way to turn
the Car presents a problem. If the Car is facing West (direction is 270) and we turn to
the right, the value of direction will now be 360 instead of the expected value of 0 which
represents North. Similarly, if the Car is now facing North (stored as a direction value of
0) and we turn to the left, the value of direction will now be -90 instead of the expected
value of 270 that represents West.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

154

 Clearly, we need a way of setting the direction attribute that will correct for this
problem. Prograph gives us this way -- it allows us to redefine the process of setting or
getting the value of an attribute with custom Get methods and Set methods of your design
that will be executed instead of the built-in Get and Set operations. Why would we want
to do this? We use custom Get and Set methods to automatically carry out some action
every time we set or get an attribute’s value. These automatic actions might prevent
possible errors during program execution. For example, what if an attribute of a class
holds an integer. Before we can set a new value for the attribute, we might check that the
new value is really an integer. This could be done by explicitly adding code that checks if
the data is an integer before every call to the attribute’s Set operation, but then the
programmer would have to remember to do this every time or face the consequences.
Better yet, you could simply add this check to a custom Set method. The custom Set
method would then perform the check and then assign the integer value to the attribute
automatically. Because the check is within the new Set method that will be called each
time we want to change the attribute’s value, we can never accidentally forget to perform
the check.

 Let’s write our own Set method for the direction attribute. In the process of
writing this method, we’ll show you a way to write more complicated “if-then” control
constructs.

 Click in the class method window and create a new class method. Call this
method direction, the name of the attribute we want to set with the method, and convert
the method to a Set method by selecting the Set item from the Opers Menu. Notice that
the icon for the method changes to one that resembles that of the built-in Set operation, as
shown in Figure 10.19.

Figure 10.19: Icon for a custom Set method

 Fill in the method’s case window’s code diagram as depicted in Figure 10.20.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

155

Figure 10.20: The direction Set method

 In C++, you would have to write a function in the Car class called SetDirection(),
always remembering to call this function when writing a new value to the direction data
member. If you forget to call this function, direction might be incorrectly set. In
Prograph, you don’t have to make a method with a new name -- Prograph just calls your
custom Set method instead of the built-in Set operation with the same name.

 The custom direction method accepts a Car instance and a user-supplied
direction and, after a few tests on its value, ultimately stuffs this new value into the
direction attribute. You might have noticed that there’s a call to Set the direction
attribute inside our own direction Set method. What’s happening here?

 Remember that we are writing a method to replace the default Set operation for
the direction attribute. At some point in our new method’s code, we’ll still have to
perform the actual act of setting the value of the direction attribute. That is, we still need
to use the built-in direction Set operation (the one that was created automatically for us
when we defined a Car class containing the direction attribute). Unfortunately, our
direction class method and the built-in direction operation have the same name -- there
must be a way for Prograph to tell them apart. We do this solely by the way we call Set
in our program.

 If Prograph encounters a Set operation whose attribute name is preceded with a
leading “/” (in the case of our attribute, /direction), your new custom Set method will be
executed. If, instead, the Set operation lacks the leading “/” (that is, direction), Prograph
will default to executing the built-in operation and not the special method we wrote. The
table shown in Figure 10.21 summarizes this notation.

Custom Get method Call built-in Get operation Call custom Get method
absent methodName
present methodName /methodName

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

156

Figure 10.21: Calling a custom Get method versus a built-in Get operation

 So in our new direction method, we must call the default Set operation to do the
actual setting of the direction attribute. Everything else in the window is just all the extra
stuff we want done automatically whenever we choose to change the Car’s direction.
This extra code includes two match tests within local methods. These tests will ensure
that the value of the new direction is within the proper range -- from 0 (due North) to
359. If the new direction value input into the method is less than 0 or greater than 359,
the local methods will execute additional cases to correct it by "wrapping around" the
value of the direction. That is, if the value is greater than 359, it will be “wrapped
around” to 0; if it's less than 0, it's "wrapped around" to 359.

 The first local method, whose code is shown in Figure 10.22, checks to see if the
desired direction is less than zero. If the match (<) succeeds, a second case must be
entered in which 360 is added to the directional value.

Figure 10.22: The <0 local method

 The second local method is depicted in Figure 10.23. It checks to see if the
desired direction is greater than 359. If the match (>) succeeds, a second case is entered
to subtract 360 from the directional value.

Figure 10.23: The >359 local method

 Let’s create the Turn class method now. This method will be used to steer the Car
to the left or to the right. The special precautions we took in “wrapping around”

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

157

inappropriate values of the direction attribute in the direction class method will come
into play now to simplify the Turn class method.

 When directions are stored as numbers from 0 to 359, turning the Car to a new
direction becomes simple. To turn the Car to the left, we subtract 90 from the direction
(see Figure 10.24). This is why the direction class method added 360 to the direction
when we tried to set it to anything less than zero, such as -90.

Figure 10.24: First case of the Turn method

 If the turn is to the right instead, the current direction code is incremented by 90
and the new value is put back into the direction attribute, as seen in Figure 10.25.

Figure 10.25: Second case of the Turn method

 If the user attempts to turn in any other direction, a third case is entered that
displays a warning message (Figure 10.26).

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

158

Figure 10.26: Third case of the Turn method

 The Shift Gears class method changes the current gear of the Car by setting its
gear attribute (see Figure 10.27).

Figure 10.27: The Shift Gears method

Setting Default Attribute Values

 We’ve now completed all of the Car class methods, but we have one last step to
complete. When we create an object from a class, what are the precise values of that
object’s attributes? What if we want a new object to have specific values for its
attributes?

 We may set default values for each attribute by editing them in the Attributes
window. In Figure 10.28, we have reset the attributes of the Car class to the values we
want them to have by default. Now, every time we create an object from the Car class, it
will have all of its attribute values set to these default settings automatically. We’ll never
have to worry about accidentally starting to use the object with a random or unknown
attribute value. In procedural code, it’s easy to forget to call methods that do initialization
of data. This may result in the use of inappropriate data values that can cause the program
to run incorrectly or crash. Default attribute values are just one more advantage of using
object-oriented programming. Objects created from a class are automatically initialized
without the need for you to explicitly call such an initialization method yourself for each
and every object you create.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

159

Figure 10.28: Setting default values for the attributes of the Car class

Putting Objects to Use in Prograph Programs

 Our Car class, although fairly simple, is complete and ready to be “plugged into”
a program. How do we use the object? It's fairly simple. We'll write a Test Car universal
method that will create an object from the Car class, then get the Car to “drive around”.

 Open the Universal window if it's not already open. Create a universal method
called Test Car. Open the code window and click in it to create a new program element.
Now, while the operation’s icon is highlighted, select the Instance item from the Opers
Menu. The Instance menu item converts an untyped “plain” Prograph operation into an
instance generator that will create an instance of a class as its output -- in other word, an
object. This is shown in Figure 10.29.

Figure 10.29: Creating an instance of a class

 Name this new instance (or object) Car to let Prograph know that this object will
be derived from the Car class (Figure 10.30). The instance icon denotes more than just
the creation or instantiation of an object. After instantiation, Prograph can also
automatically call an instance or initialization method if you write one. Although you can
set attribute values simply by defining default values for attributes, instance methods
allow you to do more than this, such as allocate memory automatically when the object is
created. In this respect, instance methods are like C++ class constructors. We’ll show you
one powerful way that an instance method can be applied in the next chapter when we
create practical classes that you can reuse in your programs.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

160

 Note that the Car instance generator icon has one root and one terminal node. The
root node of the instance generator returns the new object we’ve just created. The
terminal node is used optionally for feeding input parameters into the instance generator.
These parameters, sent into the instance generator in list form, are values to be placed
into each of the newly-created instance’s attributes. This is simply another way to set the
attribute values at run-time without having to write an initialization method to set each
value individually. This method of initialization can be quite useful -- we’ll show you a
powerful way to take advantage of it in Chapter 13.

void TestCar(void)
{
 Car myCar = new Car;
}

// Constructor

Car::Car(void)
{
 // Set the Car’s data values
}

Figure 10.30: Generating an instance of the Car class, with its C++

language equivalent

 After creating a Car object, we can get the new Car to perform the actions we
desire of it by sending it requests to perform actions. These “requests” are in fact calls to
that object’s class methods. Complete the Test Car method code diagram as shown in
Figure 10.31. Now you can see why we wrote each class method to accept a Car object
as an input, then output the same object again when finished. This allows us to send one
method call after another to the same Car object. In other words, we can pass one Car
instance directly from one class method call to the next. Our code diagram is simpler and
easier to understand. It can be seen easily that the Test Car method is taking one Car and
asking that Car to do several actions in sequence.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

161

void TestCar(void)
{
 Car myCar = new Car;

 myCar.ShiftGears(“Drive”);
 myCar.Accelerate(50.0);
 myCar.Turn(“Right”);
 myCar.Turn(“Right”);
 myCar.Turn(“Left”);
 myCar.Brake(32.1);
 myCar.Stop();
 myCar.ShiftGears(“Park”);
}

Figure 10.31: The Test Car method for creation and use of Car objects and

its C++ equivalent

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

162

By The Way...

We’ve only used one particular way of calling class methods in
the example above. The “/method” syntax is a data-determined
method reference, in which the method to be executed is found
within the object that arrives on the leftmost root node of the
called method. But there are also other ways to call class
methods. If one class method is called by another class method
using the syntax “//method”, the method call is context-
determined. The called method is within the same class as the
method calling it. Finally, a class method may be called as
“class/method” - an explicit class method call - where we
explicitly state which class contains the called method.

 The simplicity of the Test Car method shows the beauty of using OOP in
Prograph programs. Once the Car class has been completed, we just create an object
from it and send the object requests to do things like speed up or turn. To reuse the
completed Car class in another program written by yourself or somebody else, never
needs to know ever again how each action of the Car is carried out. All they have to do is
send requests to the Car to perform these actions. The internal workings of the Car have
been encapsulated or hidden from the user. In this example, the code of the Test Car
method does not need to access the inner workings of the Car in order to make the Car
do its stuff. Object-oriented programming has made it easy to reuse the Car over and
over again in new programs.

Exercise 10.1:
Design and create a class called Animal that has the major characteristics of animals
such as a tail, color, a number of legs, size, etc. Provide methods to allow the class to
act like an animal. Test the class with a universal method that creates an object of type
Animal, then has it perform the actions expected of an animal. Use the show primitive
to
display what the animal is doing.

 Remember that although all objects created from a given class share the common
properties and actions of the class, each object does not have to have the same values for
each of its attributes. Just to demonstrate, try out the Test 2 Cars method shown in Figure
10.32. This method creates two independent Car objects, and sets the speed and
direction attributes of each to different values by accelerating to different speeds and
turning in different directions. So even though each of these two objects is derived from
the same Car class, the objects do not have to be identical in every respect to still be cars.
If their attributes were always identical, you couldn’t have two models of car or drive the
two cars differently.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

163

Figure 10.32: The Test 2 Cars method for creation and use of two Car
objects

Summary

 Classes are the backbone of object-oriented programming. In this chapter, we
have shown you how to create classes in Prograph, by defining both their attributes and
class methods.

• When attributes are defined, they may be given default values. Every object
created from the class will have its attributes automatically set to the default
value.

• Special Get and Set operations are automatically provided by Prograph to

read the current value of an attribute or write a new value to it.

• We may replace the Get and Set operations for an attribute with our own
custom Get and Set methods that will perform extra actions of our choice
every time we read an attribute’s value or try to give it a new value.

• Instance generators exist solely for the creation of instances (objects) of

classes. We can have the instance generator automatically call an instance or
initialization method of our own design to allocate memory or perform other
special tasks. In the next chapter, we’ll examine ways to take advantage of
these methods for our own use.

 We also introduced a new control for logical match tests in this chapter:

• The fail logical control not only tests for the success or failure of a logical
match test, but it can also transmit the result of the test to higher-level
methods to terminate execution of code dependent upon the outcome of the
logical test.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

164

 So far, we’ve used only a single simple class in isolation. We now turn away from
the use of a single class to the creation of more complicated classes using inheritance
and composition.

For More

Information...

Unfortunately, it is beyond the scope of this book to show you
how to write huge programs using dozens of objects that send
requests for action back and forth between themselves, although
some details of multiobject programs will be discussed when we
turn to the Application Builder Classes later on. Large programs
such as these are typically undertaken by programming teams at
software companies. All we can do is get you started with the
techniques used most often in smaller programs written by a
single programmer. For guidelines for designing large-scale OOP
programs, see the book “Designing Object-oriented Software” by
Rebecca Wirfs-Brock, Brian Wilkerson and Lauren Wiener
(Prentice-Hall, 1990).

