
Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

112

8. Applying Procedural Programming

Overview

 Let’s complete the section on procedural programming with a concrete example.
In this chapter, we’ll build an example programmer’s calculator program that will convert
numerical data from one number base system to another; that is, between decimal (base
10) to hexadecimal (base 16), octal (base 8), or binary (base 2). This program will build
upon what we’ve learned so far about methods, strings, lists, loops and matches.

The Programmer’s Calculator Program

 The programmer’s calculator program allows its user to convert numbers between
four different number bases commonly used in programming tasks -- decimal,
hexadecimal, octal and binary. With four possible number bases to choose from, we are
faced with 24 or 16 possible conversions. This makes the programming task quite
formidable. However, in the process of designing the program, we could reduce the
number of possible conversions. This involves choosing one number base for an
intermediate number storage format. In other words, all input numbers will converted to
this intermediate format, then this intermediate format is converted to the final output
number. Let’s say we used decimal (base 10) as our intermediate storage format. Then
we’d need only 6 number conversions -- hexadecimal to decimal, octal to decimal, and
binary to decimal to convert the input number, and decimal to hexadecimal , decimal to
octal and decimal to binary to produce the output number. This reduces our programming
task considerably.

 The main method of our programmer’s calculator reflects this design. In Figure
8.1, we show the main calling method Number Converter. The user selects the base of the
number to be converted, the number itself, then the base to which the number should be
converted. The program then converts the input number to decimal format, then to the
final number base. The program ends by displaying the original number and the
converted value.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

113

Figure 8.1: Number Converter method

 The Choose Number Base method is quite simple (see Figure 8.2). The method is
used twice, once to select the input number base and again to select the output number
base. We therefore input the prompt presented to the user as an input to the method so the
same code may be used twice, with a different prompt each time. This method presents
the user with a set of four buttons to be selected by means of the select primitive. We
provide the names of the buttons in a list. For this method, the list contains the four
possible numerical bases -- decimal, hexadecimal, octal and binary. The output of the
primitive and this method is the user’s selection.

Figure 8.2: Choose Number Base method

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

114

 Similarly, the Display Results method is simple, as shown in Figure 8.3. All it
does is display the original input number and its base, and the final number and its base to
the user.

Figure 8.3: Display Results method

Converting Numbers to Decimal Format

 The bulk of the work of the program is done in the Convert To Decimal and
Convert From Decimal methods, so let’s get to them now. The Convert To Decimal
method accepts the output of an ask primitive that contains the number to be converted.
This number can be in any of the four possible bases -- decimal, hexadecimal, octal or
binary. However, the ask primitive only recognizes one type of number -- decimal. Any
other number is interpreted as being a string. Therefore, we will convert all input
numbers into string format before converting them into decimal numbers. As another
safety check, we’ll also strip out any spaces that the user may have typed in as well.

 The first case of Convert To Decimal is shown in Figure 8.4. Here, we accept a
decimal input number. We then convert it to a string, remove any extraneous spaces, then
call the from-string primitive, a relative of the to-string primitive we used in
Chapter 6. The from-string primitive is similar in function to the atoi() ANSI C
library function, but much more versatile. It takes a string and converts it to any other
appropriate Prograph data type, such as an integer, real, Boolean, list and so on.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

115

Figure 8.4: First case of the Convert To Decimal method

 The second case of Convert To Decimal accepts a hexadecimal input number
(Figure 8.5). If this input hexadecimal number does not contain any of the special
characters a, b, c, d, e or f (hexadecimal equivalents of the numbers 10-15, respectively),
the input number will be interpreted as a decimal number by the ask primitive.
Otherwise, it will be interpreted as a string containing both digits and letters instead of a
number. We therefore first make sure that it is in string format if it is not. We then
remove any extraneous spaces in the string.

 At this point, we need to convert the string containing the hexadecimal number
into a decimal number. We’ll call the from-string primitive to do this. But how will
this primitive know that its input string represents a hexadecimal number instead of a
decimal number? The Prograph language represents integers and numbers in string
format in several ways. Decimal numbers are represented as strings containing digits
alone. Hexadecimal numbers are represented as strings of numbers and the special
characters a-f preceded by the substring “16#” to denote that the string is a hexadecimal
number. Octal numbers in strings are preceded by the substring “8#”, and binary
numbers are preceded by “2#”. In other words, a number in any base other than 10
(decimal) is preceded by the number base and a “#”.

 We therefore take our number string, and append the string “16#” at its beginning
with the “join” primitive. We then use this modified string as the input to the from-
string primitive. The from-string primitive will then convert it to its decimal-
format equivalent number.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

116

Figure 8.5: Second case of the Convert To Decimal method

 Similar logic is used for the remaining two cases of Convert To Decimal (Figures
8.6-8.7). In the third case, used to convert an octal number to a decimal number, we
precede the number string by “8#” before converting it to a decimal number. In the fourth
case, we append “2#”.

Figure 8.6: Third case of the Convert To Decimal method

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

117

Figure 8.7: Fourth case of the Convert To Decimal method

 Before we examine how these decimal numbers are converted back to other
number bases, let’s look at the Ensure String and Strip Spaces methods used in Convert
To Decimal. The Ensure String method, shown in Figures 8.8 and 8.9, checks if its input,
the output of an ask primitive, is a number or not. If it isn’t a number, it must be in a
string format already, so we need not do anything to it. If it is a number, we enter the
second case of Ensure String and convert the number to a string.

Figure 8.8: First case of the Ensure String method

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

118

Figure 8.9: Second case of the Ensure String method

 The Strip Spaces method is shown in Figure 8.10. This method takes advantage of
the list-processing power of Prograph to simplify processing a string. First, the string is
converted to a list of numbers -- numerical representations of characters in ASCII format
-- with the to-ascii primitive. Next, we partition this list into two sublists. One
contains all of the ASCII numbers that are equal to 32 (the ASCII equivalent of a space
character), and the other contains the remaining characters. In other words, we’ve
partitioned the list into spaces and the original string without the spaces. Finally, we
convert the list without the spaces back into a string with the from-ascii primitive.

Figure 8.10: The Strip Spaces method

Reconverting Decimal Formatted Text to Numbers

 Now that our original input number has been converted to a decimal number, we
must convert it to the number base we desire as the output of the program. This is where
the Convert From Decimal method comes in. If the desired number base is decimal, this
method does not have to do anything at all (see Figure 8.11). It just passes the number
along to be printed.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

119

Figure 8.11: First case of the Convert From Decimal method

 The remaining cases of the Convert From Decimal method are just a bit more
complicated. Let’s start with the second case of the method, which handles the
conversion to a hexadecimal number (Figure 8.12). First, we convert the decimal number
input into a string representing a hexadecimal number. We use the format primitive for
this task. This primitive performs the same actions as the C language printf() string
printing function’s string formatting codes. We specify how we want the output string to
appear by inserting special formatting codes into the input of the format primitive. The
“16#” formatting code means “output a number as a string in hexadecimal form”. The
remaining 9’s in the format string mean “output any hexadecimal digit or character in this
position”. Since we have eight 9’s in the format string, our number string will be up to
eight numbers or digits long.

 The output of the format primitive is a string of the form “16#<the number>”.
We then strip off the leading three characters -- the substring “16#” -- to leave the
hexadecimal number alone. There’s still one problem. We’ve allocated space to display
up to eight digits of the hexadecimal number. What if the number string needs fewer
digits or characters? The format primitive will insert zeros in front of the number to fill
up the rest of the number string. We’ll use the Strip Leading Zeros, discussed below, to
remove these padding zeros from the number string.

 Notice that we leave the number in string format instead of converting it back to
numerical format. This is because converting back to numerical format would revert the
number to a decimal form. Besides, all we are doing with the number is displaying it, so
there’s no harm in leaving it in string format.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

120

Figure 8.12: Second case of the Convert From Decimal method

 Cases 3 and 4 of Convert From Decimal are similar. In the third case of the
method for conversions to the octal format (see Figure 8.13), we begin the formatting
string for the format primitive with “8#” to denote an octal string, and leave a little
more room in the output number string for the longer converted octal number by placing
more 9’s in the format string. Since the leading format code is “8#”, we need strip only
two characters from the string with the prefix primitive.

Figure 8.13: Third case of the Convert From Decimal method

 In the final case for conversions to the binary format (Figure 8.14), we begin the
formatting string for the format primitive with “2#”, and place several 9’s in the format
string.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

121

Figure 8.14: Fourth case of the Convert From Decimal method

 The last method of the programmer’s calculator program removes the leading
zeros that the format primitive places in front of short numbers. The Strip Leading
Zeros method is called as a repeat by the Convert From Decimal method. This repeating
method first checks if there are any leading zeros in the number. The “in” primitive
checks for zeros in the string and returns the position of the zero in the string. If the
returned position is 1, the first character in the number string was a zero. It then uses the
prefix primitive to remove that zero, and proceeds to the next iteration of the repeat. If a
leading zero was not present, the number string is returned unchanged and the repeat is
exited.

Figure 8.15: First case of the Strip Leading Zeros method

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

122

Figure 8.16: Second case of the Strip Leading Zeros method

Summary

 In this chapter, we combined the knowledge we gathered in the previous chapters
to create a useful Prograph program that converts numbers from one number base to
another. We used structured program design (general methods containing more and more
specific methods), program flow control, strings and lists.

• Matches were used to check the number base of the input and output number
bases and execute the appropriate code for each number base.

• A repeat loop was used to remove leading zeros from the final output number

(in string form) by searching the leading character of the string for a zero,
removing it, then checking the remaining string again.

• Lists were used to remove spaces from strings. Strings were converted to lists

of numbers, spaces were partitioned from the lists, then the lists were
converted back to strings. The special conversion primitives to-ascii and
from-ascii helped here.

• Strings were used to hold sequences of digits (and special characters used in

hexadecimal numbers). Special string conversion primitives (from-string,
format) converted numbers to and from string format.

