
Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

83

6. Strings and Persistents

Overview

 We’re almost finished reviewing the background procedural programming
material needed to start discussing object-oriented programming in Prograph. All that is
left are some miscellaneous topics -- special data types that are built into the Prograph
language, but are not typically found in other programming languages. In this chapter,
we’ll be examining how to use two new data types -- the text string and the persistent.
Strings are special data types made especially for holding text, as opposed to the low-
level collections of independent characters that other programming languages use to store
text. Persistents are global variables that have special properties not seen in the global
variables of other languages.

String Variables

 Strings are simply text that is stored as a type of data. In Prograph, strings are a
built-in data type (the “text” type) that is defined internally as sequences of characters.
However, they are used as a complete entity of their own -- an entire block of text or
words -- rather than as individual characters. This is immediately evident in both the code
diagrams and in the Value dialog for strings, where strings are displayed as an entire
block.

 This is in sharp contrast to other languages, like C, where strings are nothing more
than arrays of characters, and this is how they must be accessed. You can’t automatically
manipulate the string as a whole, but instead must write a loop to manipulate its
individual characters. What a pain in the neck! Prograph was made to make programming
simpler, and strings are no exception.

 Until now, our use of strings has been limited for the most part to text constants.
We’ve used text constants to prompt the user for input, to give directions, and to give
greater meaning to the outputs of our programs. In the few programs where we’ve used
string variables, that is, when we’ve had the user input text strings, we’ve done so
without making any changes to the text. In other words, our only use of strings to date
has been to make our programs more user-friendly. While this is not a bad thing to do,
there are certainly many other uses for strings. Text may also be manipulated as a
variable -- we may concatenate or join strings of text together, break down large strings
of text into smaller substrings, or test strings or substrings for equality.

Concatenation

 Some of our previous programs have required us to use the show primitive with a
large number of input nodes in order to present a long string. It was easy at times to get
these numerous nodes mixed up. The Prograph “join” primitive allows us to
concatenate as many strings (including text constants) as we wish into one long string,

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

84

like calling the ANSI C library function strcat() repeatedly. The quotation marks
surrounding the name of the “join” primitive remind us that this primitive is used only
on strings (strings are usually delimited by quotation marks). Let’s start with a simple
example.

 Begin with a new Get Full Name program, section and universal method. Open
the Get Full Name method window and introduce three ask commands which will input
the user’s first name, middle initial and last name. For the ask used to enter the middle
initial, inform the user that they do not have to enter a period after the initial (the program
will insert it automatically). Ensure the proper order of execution of the three ask
primitives by using synchro links (see Figure 6.1).

Figure 6.1: Initial code for the Get Full Name method

 Create a “join” primitive under the three ask primitives. The “join”
command will concatenate the three parts of the user’s name that were entered by the
three separate ask commands. The visual nature of the code makes the joining of text
together more obvious. The first input to the “join” primitive is the string containing
the first name, output by the first ask primitive. The second input, to be appended to this
string, is a text constant containing a space character to separate the text of the first name
and the middle initial. A space character is denoted by a space between its quotation
marks. Next, a third input, the string output by the second ask primitive containing the
middle initial string, is concatenated to our string. The fourth input to the “join”
primitive is a short text constant containing a period to follow the middle initial, plus a
space to precede the last name. The final input to the “join” primitive is the last name,
input using the third ask command.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

85

Figure 6.2: Completed code for the Get Full Name method

 The final concatenated string contains the entire user name. This string is passed
to a show primitive, which prints a greeting to the user, displaying the text “Hi, ”, then
the user’s name, then another text constant containing “, this is your computer
speaking!”.

Figure 6.3: Output of the Get Full Name program

 Notice that the show primitive itself can concatenate many inputs. Why then do
we need to use the “join” primitive at all? If we had not done so, the show primitive
would require seven inputs -- the two inputs needed for its text constants, plus all five of
the inputs gave instead to the “join” command. This number of inputs to one primitive
would be very unwieldy and confusing to the reader of this method’s code. The sheer
number of inputs could, in turn, make the programmer more likely to make a mistake. By
splitting the handling of the large number of strings between two primitives, we’ve made
them easier to deal with.

Exercise 6.1:

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

86

Create a program to do the following: Ask the user for a subject (a noun), adjective,
adverb and object (another noun). Construct a single string that will contain the
sentence:

 “The (adjective) (subject) jumped (adverb) over the (object).”
Have the program replace the four parts of speech in the sentence with those entered by
the user, then display the new sentence.

Substrings

 Now that we know how to concatenate or join strings together, what about the
opposite problem -- accessing one smaller set or substring of characters contained within
a larger string? Prograph provides three primitives to split off substrings from a larger
string -- prefix, middle and suffix. They extract the beginning, middle and end
sets of characters, respectively, from the large string input to them.

 Prefix accepts a string input, and extracts from it the leftmost characters of the
string. It outputs both this substring and the remaining rightmost characters of the original
string (the suffix of the string). Just how many characters are extracted into the prefix is
determined by a second input to the prefix primitive. Suffix acts in a similar manner to
split off the suffix of a string, and outputs both the suffix substring and the remaining
prefix of the string. Notice that both primitives do similar tasks. The difference is that
prefix splits off n characters of prefix, and the suffix primitive splits off n
characters of suffix. Each does not really care about how many characters remain in the
original string when they’re finished. As an example, if our input string is “Betty Boop”,
a call to prefix with a request to split off 3 characters yields the substring “Bet” and
the remaining suffix “ty Boop”. If we’d called suffix instead with the same request to
split off 3 characters, we’d get the substring “oop” and the remaining prefix “Betty B”.

 The middle primitive extracts the n characters requested from the middle of a
string. It knows where in the string to begin its extraction by means of its index input,
which tells it to start at a particular character. In other words, we tell the middle
primitive to extract n characters starting at character index. The remaining characters of
the original string are not returned. To reuse our example, a call to middle with a
request to split off 3 characters (n) from the string “Betty Boop” starting at character 4
(index) would yield the substring “ty “ (with a space at the end).

 We’ll leave the application of these primitives as an exercise for the reader.

Exercise 6.2:
Ask the user to enter their address with a single ask primitive. Then store the house
number, street name, city and state in separate persistents by separating the string
entered by the user into its component substrings.

String Conversion

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

87

 The “join” primitive used in Get Full Name has one major limitation: it only
works with strings. But what if our program asked the user to input numbers? How could
we create a large string (like a sentence) to contain these numbers? Luckily, Prograph
provides yet another primitive to let us do this -- the to-string number-to-string
conversion primitive.

 Create a program called Numbers To Strings and its main method. Start entering
the code diagram of this Numbers To Strings method as shown in Figure 6.4.

Figure 6.4: Initial code of the Numbers To Strings method

 In this method, the user will enter numbers instead of text. We’ll add the two
numbers together, then display the result in a sentence that reads “The sum of x and y is
z.”, where x, y and z are three numbers. In this example, we’ll use the “join” primitive
to create our output string for display. To accomplish this, we change the numeric data
entered by the user or added by the + primitive into string data, using the to-string
primitive (see Figure 6.5). The to-string primitive is very much like the ANSI C
library itoa() and ftoa() functions, except that it is polymorphic -- it can output a large
variety of different data types, including integers, reals, lists, and more. This sort of
flexibility is only possible with Prograph.

A Hint...

The “join” primitive cannot handle leading or trailing spaces
in the text strings it receives as inputs. To ensure that these
spaces are printed properly, enclose all strings beginning or
ending with spaces in quotation marks.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

88

Figure 6.5: Completed Numbers To Strings method

 We feed the output of each “join” primitive (a number in each one here), and
the output of the + primitive (also a number), into three to-string commands. The
string versions of each number can now be safely input into the join command to create
the displayed message containing both text and numbers (Figure 6.6).

Figure 6.6: Output of the Numbers To Strings method

Persistents

 Universal methods can be called over and over again anywhere in your program.
But what about data? Can we create data elements that can be used and reused anywhere
in our programs? Yes. In C++, these data elements would be called global variables. In
Prograph, the equivalent data element is the persistent.

 But persistents are much more than this! They don’t just hold their data while our
program is running, as do simple global variables. Let’s show you what we mean…

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

89

 In programming courses using C++, one of the first programs commonly written
is a checkbook-balancing program. The program would begin with a starting balance for
the checkbook account (stored in a global variable), and ask you to enter credits
(deposits) and debits (withdrawals) from the account. The program would end by
displaying a list of the credits and debits, and the final (updated) balance. Without fail, a
student will ask how can you get the computer to “remember” the account balance so that
if you run the program again in a month, you wouldn’t have to re-enter the account
balance to use as a starting value. In C++, the solution is not easy -- the contents of the
computer memory (including the memory location holding the global variable) are wiped
out when the computer is turned off! You must store the balance onto a disk.

 In Prograph, we can save the balance without explicitly storing it to disk
ourselves. We do this with persistents. Persistents are automatically saved to disk for you
when the program ends. The next time the program starts, the previous value of the
persistent will be read back from disk to be reused. In this aspect persistents are similar in
function to a recent development in C++ called persistent objects. The difference is that
persistent objects are not built into C++ -- it requires extra code libraries, if you can find
them. In Prograph, persistence is built into the language.

Warning!

The automatic saving of a persistent’s value is accomplished by
modifying the storage of the Prograph program itself on disk.
While this is easily accomplished when running a Prograph
program within the interpreter, compiled programs pose a
problem. We can’t go around modifying compiled program code
each time we want to save a persistent’s value. In compiled
programs, we use the save and load primitives to explicitly save
the primitive’s value to disk then restore it the next time the
program is run. What this means is that a Prograph persistent is
truly and automatically persistent only within the Prograph
environment; in compiled programs, they are simply the same as
global variables unless we save and restore them ourselves.

 We’ll now write a program that will store a password in a persistent. The user
must enter the proper value of the persistent in order to be allowed to run the rest of the
program. If the wrong value is entered, the program ends. It’s obvious that we don’t want
to lose the value of the password each time we stop running the program, so we’ll keep it
permanently stored with the program in a persistent for future reference.

 Create a new program, section and method named Password. Open the Password
method window and enter the code of Figure 6.7.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

90

Figure 6.7: Reading the value of a persistent in the Password method

 The persistent is created by adding a blank (unnamed) operation, then
highlighting it and selecting the Persistent menu item. This changes the blank icon to a
persistent icon. Name the persistent Password. It will store the current value of the
password that the user needs to know to run the rest of the program. To pass the value of
Password to the Get Password method, create a root node on the Password persistent
icon, then connect it with a link to a new terminal node on the Get Password method
icon.

 What is the current value of Password? Open the Password persistent’s Value
dialog (see Figure 6.8). The value dialog tells you the type of data stored in a persistent
and the value of that data. The Value dialog has two displays in it. On the top is a pop-up
menu containing possible data types for the Password persistent. The current data type is
displayed in the pop-up menu. A second pop-up menu allows you to choose the size of
the font used in the dialog. On the bottom is the value of the currently-selected data. By
default, the persistent is of type null (no particular data type) and contains the value
NULL.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

91

Figure 6.8: Viewing the value of a persistent with the Value of Persistent
dialog

 Let’s change the Password persistent so that it will hold a string, then set the
value of the string to “ABCD”. This string will be our default password, which we’ll
change later. Select the string item on the pop-up menu. The content of Password is now
a string type, but it is an empty string, as shown by its value (“”) on the bottom of the
dialog. Edit the string’s value to read “ABCD”, as shown in Figure 6.9, then click the OK
button to close the dialog. Our Password persistent now contains the string “ABCD”.

Figure 6.9: Entering a new value for a persistent with the Value of
Persistent dialog

 The Password method now will read the current value of the Password persistent
(now “ABCD”), and call the Get Password method to ask the user to enter the password’s
value.

 Now let’s write the Get Password method. This method, shown in Figures 6.10-
6.11, receives the current value of the Password persistent and asks the user to enter what
they think the password is. The match test in this method checks to see if these two
strings match -- that is, whether or not the user typed in the correct password.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

92

Figure 6.10: First case of the Get Password method

 If the two strings don’t match, that is, the user’s guess for the password is
incorrect, this method, and the program, end. If the user is correct, a second case for the
Get Password method is entered which calls a Main Menu method that presents the main
menu of program actions that the user may select.

Figure 6.11: Second case of the Get Password method

 The Main Menu method (Figure 6.12) presents the user with two possible choices
of what to do next: continue to run the rest of the program, or reset the current password
to a new value. Note that the user can’t do either without having entered the correct value
of the current password -- this code wouldn’t have been reached at all. The user’s
selection of what to do is accomplished with the answer-v primitive, which passes the
name of the method to be executed to an inject node. If you don’t remember how to use
inject, review the Choose Trig Function program on page 65.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

93

Figure 6.12: The Main Menu method

 If the user wants to change the current value of the password stored in the
Password persistent, the Change Password method is entered (Figure 6.13). This method
replaces the current value of the Password persistent with a new value entered by the
user.

By The Way...

Notice how easy it is to get or set the value of a persistent. To get
its value, give it a terminal node on the bottom and send its value
to a method with a link. To set its value, create a root node on its
top and send it a value from a constant or a method.

Figure 6.13: The Change Password method

 If the user instead decides to run the rest of the program, the Start Program
method is called (see Figure 6.14). In an actual program of your own design, this method
would call all of the important code in your program, and do whatever it is you want the
program to do. In this example, however, we’ll just display a message that tells you that
the Start Program method was executed.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

94

Figure 6.14: The Start Program method

 Let’s run the program. The program asks you to enter a password. Our initial
password value had been “ABCD”. Let’s enter this value now so we can see how the rest
of the program works (Figure 6.15).

Figure 6.15: Prompt to enter the password

 Once the correct password is entered, the main menu is presented, as shown in
Figure 6.16.

Figure 6.16: Dialog to select action

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

95

 Select the “Change Password” item. A dialog will be presented (Figure 6.17) for
you to replace the value of the password with a new value.

Figure 6.17: Prompt to enter a new password

By The Way...

You can confirm that this value is really stuffed into Password by
checking the value of the Password persistent later:

 If you’d chosen to start the program instead, you would have seen the message
displayed in Figure 6.18:

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

96

Figure 6.18: Message indicating that body of program may be run

Exercise 6.3:
Write a savings account program which will present the user with the choice of
withdrawing from a bank account or making deposits to the account, and keep track of
the account balance. Use a persistent to store the running account balance. Assume a
starting balance of $250.00.

Exercise 6.4:
Write a lottery program which will calculate six random numbers between 1 and 49 for
the selection of lottery entry numbers. The six numbers must all be different, so store
each of the six numbers in a list stored in a persistent and check the value of each
random number to the current contents of the list.

Summary

 In this chapter, we covered two special Prograph data types:

• The string is used to hold sequences of characters, and may be used as either a
text constant or a variable. It is the Prograph equivalent of the C++ array-
based string. We have provided examples that demonstrate the use of strings
in concatenation, splitting into substrings, and displaying numerical data.

• The persistent is Prograph’s equivalent of the global variables of other

programming languages. That is, the value of a persistent may be read or set
anywhere in a program. But that’s only part of what a persistent can do. Its
value may be retained from one execution of the program to the next. This
makes it especially well-suited for holding permanent but changing data.

