
Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

121

9. Principles of Object-Oriented Programming

Overview

 The principles of top-down procedural programming we reviewed in the previous
section of this book will now be extended and modified as we turn to a new style of
programming -- object-oriented programming (abbreviated as “OOP”). Object-oriented
programming, like procedural programming, is primarily a strategy for breaking down
large, complicated programming tasks into a set of smaller, simpler, more manageable
components. The difference between these two programming approaches is the particular
way in which we break down the programming task. The object-oriented paradigm brings
with it several major benefits, not the least of which is the ability to take advantage of
Prograph’s Application Builder Classes to easily design and manage user interfaces
(windows, menus and dialogs). This chapter will focus on what OOP is, why you should
use it, and when it should be used.

Why Use Object-Oriented Programming?

 Why can’t you just use procedural programming? Why use OOP at all? Well, you
can still use procedural programming -- some programmers would argue that certain
types of programs may be better suited to procedural programming, such as math-
intensive programs. In fact, many large commercial applications are still programmed in
a procedural style. However, there are problems with continuing to write large programs
in a procedural style.

 Most of the time spent programming isn't really devoted to writing programs -- it's
spent modifying programs to fix errors and to change what programs do to fit new needs.
As you build larger and larger procedural programs, the programs get much harder to
manage and modify to handle new chores or add new features. Think about how many of
the applications you own which are not updated regularly, or when they are finally
updated are still very much full of bugs. This problem is a symptom of what has been
called the “software crisis” -- the need to spend more and more time merely maintaining
and fixing applications, let alone improving them. Why has the software crisis occurred?
Simple -- the more complicated the program, the less efficient the procedural
programming style becomes in terms of programming effort.

 Procedural program design concentrates on breaking apart a large task into
several, sometimes hundreds or thousands, of methods. Unfortunately, these numerous
methods are completely independent of each other, as suggested by Figure 9.1 --
essentially unaware of what other methods do and upon what data the other methods
perform their actions. The burden is placed on the programmer to ensure that methods
are called in the correct order, and that each method uses the proper data input. If not, the
program will provide incorrect answers or, even worse, crash. The more methods you add
to the program, the harder it is to manage potentially harmful interactions between
methods in different parts of the program. Fixing a bug or adding code to one part of the

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

122

program might require changing methods in other parts of the program too. Now imagine
what happens when a bug occurs! How do you find it in this mass of independent code?

Procedural Program

Method

Method

Method

Method

Method

Figure 9.1: Organization of a procedural program

 It’s here that OOP can help. Object-oriented programming is a different way to
break down a program into small, manageable modules that accomplishes many of the
goals of well-written software. First, the modules in OOP programs wind up being more
adaptable and reusable, so we can then pick and choose them to build new programs,
then extend them to suit new situations. Second, the modules are also better “self-
contained”, which improves their reliability by reducing the possibility of errors within
them propagating throughout the program that contains them.

 With OOP, programs are not just collections of unrelated methods, but are
systems of interacting self-contained modules of data and methods called objects which
can “ask” each other to perform actions (see Figure 9.2). The objects are defined by
classes -- descriptions of the data and methods that each object contains. Program design
involves for the most part planning what we want the objects in our program to be able to
do (by themselves or in conjunction with other objects). We do this by creating
definitions called classes that describe these objects. So while procedural programming
concentrates only on which operations should be done and in what order, object-oriented
programming focuses on which data modules (objects) should be used in a program, and
how each data module will act on its own and in cooperation with other data modules.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

123

Object-Oriented Program

 Data
(Traits)

Methods
(Actions)

Object

 Data
(Traits)

Methods
(Actions)

Object

 Data
(Traits)

Methods
(Actions)

Object

 Data
(Traits)

Methods
(Actions)

Object

 Data
(Traits)

Methods
(Actions)

Object

 Data
(Traits)

Methods
(Actions)

Object

Figure 9.2: Organization of an object-oriented program

 As you can tell from the above discussion, object-oriented programming
encourages us to spend more time on program design and less on writing the precise
operations needed to perform the tasks of our program. While this may make the design
phase of programming last longer, the benefits of this extra forethought and planning far
outweigh its costs. Object-oriented design saves us a great deal of time later when we
must debug or modify the program. For example, if you have a class called File in your
program that handles reading and writing files, and a file access bug exists, you know
exactly where the problem must be.

 The compactness and modularity of objects and classes also has two major
benefits. First, it makes objects and classes more reusable than are independent methods -
- it is easy to “plug in” an existing class into a new program and have the program work
correctly. Classes may therefore be used over and over again to create objects in new
programs. Second, it is also easier to change the inner workings of a class -- how it is
implemented -- without disastrous effects on the rest of a program. This makes it easier to
experiment with writing more efficient code for an object without having to totally
rewrite the rest of the program to account for the changes in the class. Classes allow
extensive prototyping of programs.

 The OOP model of software development fits in very nicely with user interface
design. User interfaces are based upon several OOP concepts. The user interface is
composed of interrelated menu, window, dialog, alert and control objects interacting and
communicating with one another to present information to the user in a friendly way.

 All of this unbridled enthusiasm about object-oriented programming does not
imply that OOP is a magical solution to all programming problems -- no programming
paradigm is. You can make errors in writing OOP programs just as you can in other
programming styles. However, the programming style of OOP programs helps avoid
several problems and helps promote code reuse. That in itself offers more than enough
benefits for the programmer.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

124

 Object-oriented programming is considered by many to be the programming style
of the 90’s. Microsoft has embraced OOP for its Windows NT operating system. NeXT
has bet its entire future on an object-oriented operating system for UNIX and Intel-based
computers. Apple Computer has increasingly warned software developers that they must
employ OOP if they are to take full advantage of the new Power Macs. Apple and IBM’s
forthcoming Taligent operating system for Power PC and Power Mac computers has been
written from the ground up as a collection of objects.

 Luckily, Prograph not only supports object-oriented programming, it encourages
its use by making it simpler. Prograph not only allows you to create and use objects with
visual design tools, but it also provides a rich object-oriented library called the
Application Builder Classes for creating and managing user interfaces. We’ll discuss the
Application Builder Classes in Chapters 14-17.

For More

Information...

For an in-depth discussion of the concepts of object-oriented
programming, we recommend that you read “An Introduction to
Object-Oriented Programming” by Timothy Budd (Addison-
Wesley Publishing Co., 1991) or, for Macintosh-specific OOP
programming, “Object-Oriented Programming for the
Macintosh” by Kurt Schmucker (Hayden Books. 1986).

Solving Problems by Using Classes and Objects

 Object-oriented programming is a more natural way than procedural
programming to represent real-world concepts. The key building blocks of object-
oriented programming are classes and objects. Classes define what a set of real-world
objects have in common, using both data and methods.

 A class can be thought of as a “template” for the creation of individual “generic”
objects. A class describes what all objects of that type have in common -- what makes
the object that particular type of object. Objects are the particular instances of a given
class. Each object possesses the common set of attributes defined in the class, but may
differ in the exact values given to each attribute. One way of thinking about this is that a
class is like a cookie cutter that describes the shape of the cookies you’ll create. The
objects are the individual cookies themselves. They must have the basic properties of
cookies and must have the shape defined by the cookie cutter, but they don’t all have to
be precisely alike in all respects -- one may be chocolate, another vanilla, another lemon
and one may be eaten or cooked and another not.

 Let’s illustrate classes with a concrete example. Let’s say that you need to write a
car racing game program that simulates driving different models of automobiles. To
adequately make a computer program behave like a car, we create a class that represents
the common characteristics of all cars. First, all cars perform similar actions. For

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

125

example, cars can steer, move forward or in reverse, accelerate, slow down, or stop, but
they can't do things like fly or walk. These actions form the methods of the class.

 Second, all cars are built from a common set of traits -- for example, the parts of
the car such as its engine, tires, transmission, and so on -- that remain constant for a given
car and distinguish it from other cars. Third, each individual car has its own unique state -
- the current speed at which it is traveling, its current owner, etc. -- that can change for a
given car. These common traits and state contribute to the data part of the class.

 It is the common characteristics and actions of cars that are defined in a class that
could represent any type of car. We could create a class called Car that contains both
code components called class methods (the actions that the car is able to do), and data
components called attributes that define the properties of the car -- both its traits (what
makes the car uniquely a particular kind of car and not a cat or dog) and the state of the
car (the condition of the car at this moment). Figure 9.3 shows the components that make
up a class.

Class

Attributes Methods

 Properties

 1. Traits
Properties that all
objects of the class
possess. Value can differ
across objects, but
cannot change within
each object.

 2. State
Current status of each
object of the class. Can
change within each
individual object

 Actions
Can be performed
by all objects of
the class.

Figure 9.3: The components of a class

 Returning to our car example, while the Car class just defines what all cars have
in common, objects created from the Car class are the individual distinct cars themselves,
such as one particular person’s Ford or one given Ferrari (see Figure 9.4). That is, while
the Car class is a general description or model for what any car is, objects created from

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

126

the Car class are individual unique cars differentiated by what makes one car different
from another. One given object, such as My Ford or My Ferrari, is still a type of car,
exhibiting the common features and actions of the class Car. For example, each object
has an engine and can drive. However, each of these two objects is not exactly like the
other. The precise type of engine in each will differ, and each may belong to a different
owner, even though each is still a car. So while our My Ford and My Ferrari objects both
have the common characteristics of Car -- they possess all of the attributes of a car such
as engine, tires and owner -- the particular value of the Engine, Tires and Owner
attributes may differ in these individual objects.

 The class methods that each object can access, that is, the actions each can do,
will be the same for each object of this class, since all types of car should do the same
actions -- accelerate, brake or turn. If the My Ford or My Ferrari objects could perform
totally different actions, then they would really represent different things. They would be
objects of two different classes.

Figure 9.4: A class defines a set of objects

Exercise 9.1:
Design a Housecat class that would represent any house cat, using data attributes to
store the traits and state of the cat and class methods to describe the actions that a cat
can do.

 The attributes of a class can be of two different types. In Prograph, these are
called instance attributes and class attributes. Instance attributes are data elements of a
class whose value may differ in each object created from this class; in other words, the

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

127

type of data we've discussed so far. Class attributes are special data elements whose
value is the same in every object created from the class (see Figure 9.5). This value is
stored only once in memory and is shared by every object of this class. Let’s say we
wanted to store a sales tax rate in a Merchandise class that would be the same for all
Purchase objects created from the Merchandise class. It would be foolish to waste
memory by storing the sales tax rate in memory within every single object of type
Merchandise over and over again. By storing Sales Tax in a single memory location
for all objects of type Merchandise as a single shared class attribute, we save memory
storage.

Figure 9.5: Instance attributes versus Class attributes

 The packaging of code and data into classes and objects not only makes our
programs easier to read, but has the added benefit of letting us locate program errors
more easily. If a program using the Car class doesn't function properly because our

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

128

aFerrari and aFord objects are acting strangely, we know that the bug has to be within
the data or code of the Car class, and not in some other part of the program. In
procedural programming, on the other hand, an error in one method of the program can
propagate errors to other parts. Finding where in the program the initial bug is located
can often be very difficult.

The Class Interface

 Classes and objects provide data abstraction -- the creation of new data types that
represent real-world entities. You’ve already been taking advantage of user-defined data
types in Prograph. The built-in number, text and list data types were designed by
programmers at Prograph International. Numbers, text and lists do not automatically exist
within the binary code of the computer -- they had to be modeled by programmers so that
you could take advantage of them in your programs.

 Classes let you define new data types that mimic real-world things like paint
brushes or calculators, or concepts like data files and complex numbers. So long as you
can accurately describe what something does, you can write a class to model it. Once
you’ve written a class, the objects created from it can now be used as if it were a built-in
data type like list or number. Data encapsulation is the term for the ability to use classes
as new data types in programs without needing to know their inner workings. This is
similar to the use of many real-life objects. For example, we can use a refrigerator
without knowing how the freon in its coolant coils is compressed or how heat is
exchanged from the box inside it to the coils. Similarly, it doesn’t matter to a program
how a user-defined data type like a list works, only that the list behaves the way it should.

 The actions that a program may perform with objects of a given class forms what
is called the class interface -- in other words, the class methods which may be called and
the inputs required by these class methods. If programs only access an object through its
class interface, the object will only do what it’s supposed to do, and its data will be
protected better from accidental changes.

 In the example shown in Figure 9.6, an object is created from a Counter class.
We may get an object of type Counter to initialize the value of its countValue attribute
to 0 because the InitializeZero class method exists in the class interface. However, we
cannot have the object's countValue attribute initialized to a value of 5 since there is no
InitializeFive method. We have restricted the possible actions of objects of the Counter
class to initializing countValue to 0, incrementing countValue and decrementing
countValue, since these are the only methods in the class interface.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

129

Object Counter

countValue InitializeZero
Increment
Decrement

Method InitializeZero

countValue = 0

Request = "InitializeFive"

Request = "InitializeZero"

 Not permitted!
(No InitializeFive method!)

Object Counter

countValue InitializeZero
Increment
Decrement

Figure 9.6: Enforcing the behavior of a class via its class interface

Communication With and Between Objects -- Requests to Perform Actions

 Objects intercommunicate by “requesting” that specific actions be done (Figure
9.7). A program can therefore be thought of as a series of requests sent to objects or from
one object to another. The objects are “asked” to perform actions until the program’s
goals are reached. The object receiving the request has the responsibility to carry out the
requested action, and it does so by executing one of its own class methods. In other
words, an object-oriented program is a series of commands to objects (or from one object
to another) to execute their own class methods.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

130

Figure 9.7: Passing a “request” to an object to ask the object to perform an
action

 The sender of the request doesn't have to know how the receiving object actually
carries out the action -- it just has to know that the action is carried out. So, in the figure
below, the program using the My Ford object doesn’t need to know how the gear is
shifted when the request to Shift is sent to the My Ford object. The program only needs
to know that the process of shifting gears gets done.

 Requesting actions from an object via the class interface has an important benefit
-- the ability to change a class’ implementation details without affecting the programs
that use the class. Let’s assume our Car class contains a class method called Shift.
Because the details of the Car class method Shift are “hidden” from the user of the Car
class, we may change how the Shift method works (the code within the Shift method)
with no adverse effects to the rest of the program. For example, whether our Car shifts
manually or automatically doesn’t matter to the program. All the program cares about is
that the shifting is carried out (see Figure 9.8).

Object My Ford

Drive
Shift
Steer

Method Shift

1. Depress Clutch
2. Move Gear Knob
3. Release Clutch

Object My Ford

Request = "Shift" Drive
Shift
Steer

1. Let Automatic
Transmission
Shift Gears

Request = "Shift"

Method Shift

4-cylinder
Radial
S. Steinman

4-cylinder
Radial
S. Steinman

Figure 9.8: Information hiding in a class allows experimentation with the
precise steps taken to perform an action

 This allows us to experiment with different ways of solving problems -- that is,
prototype our class -- without “breaking” our programs. So long as the request to execute

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

131

a method that is sent to the class’ object is kept the same, exactly how the request is
handled by that class method does not matter to the program.

 As another example, let’s say we want to implement a drawing program. We can
specify the shapes that will be drawn as different classes such as Triangle or Circle or
Square. The internal details of these classes are left up to us to write in any way we
choose so long as it gets the job done. We can represent the shapes in different ways; for
example, we can use Euclidian coordinates (x,y pairs) or polar coordinates (magnitude
and angle). Each shape can implement its drawing class methods and attributes in either
Euclidian or polar format. When we send a request to the shape to “draw itself”, it will do
so using whichever representation we’ve decided to give it. But the program using these
shapes doesn’t need to know which representation the class is using to represent its
shape. It just has to know that the shape is to be drawn. We can change which
representation we use at our leisure, depending upon which is simpler for us to code for a
given application.

Software Reuse -- Inheritance and Subclassing

 When we look at a particular breed of cat, we immediately see that it has many of
the traits of the cat family in general. At the same time, one particular cat is not exactly
the same as every other feline. A distinct breed of cat shares some of the properties and
actions of felines in general, but also adds its own unique traits or actions that set it apart
from other types of cats. For example, a tiger and a house cat both have sharp teeth, claws
and fur, but a house cat purrs and drinks milk, while a tiger roars and hunts gazelles. Both
the tiger and the house cat inherit the general features of what defines a cat, but add new
attributes that make them distinct from each other. A tiger or house cat can be thought of
as different subtypes or subclasses of felines.

 Similarly, classes within a computer program may be modified to adapt to new
applications via inheritance (also called subclassing). We can derive new classes (child
classes or subclasses) that are automatically given the attributes and methods of our
original class (the parent class or superclass), then add new attributes or methods that
will allow the new subclass to do new things. In this manner, we can build new classes
that reuse existing code that we know already works. If the original parent class worked
correctly, we can be assured that the inherited code from that class will also work
correctly in its new subclass. We save programming time and effort, as well as debugging
headaches, by just reusing the working parts of the superclass. What this means is that
when we are faced with a new situation that requires a user-defined data type that is
similar but not exactly the same as a class we’ve already written, we don’t have to start
coding all over again from scratch -- we simply build a new data type by adding new
capabilities to meet the new program requirements to the existing code from its parent
class.

 For example, we may create subclasses of our Car class that serve other
functions, like a Limousine class, shown in Figure 9.9. The Limousine inherits the traits

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

132

and actions of a Car, since it’s just a type of Car. The Limousine will still accelerate,
brake, turn or shift like a Car, since it still is a Car. But the Limousine will also have
different traits than will a Car, such as a chauffeur, a wet bar and a television, and may
also have different actions than does the generic Car, such as Serve Drinks. That is,
while the Limousine shares the attributes and methods of a Car, it will also possesses
new attributes and methods of its own. The time needed to write the Limousine class is
minimal since most of its code was already written for the Car class.

Class Car

Class Limousine

Serve Drinks

 (plus all
class methods
 of Car)

chauffeur
wetBar
television

(plus all
 class
attributes
 of Car)

Figure 9.9: Subclassing a class to form a new class

 Subclasses are created for two reasons. First, as we’ve already seen, they can
change the behavior of a parent class by specializing its behavior with new class
methods. The Limousine was an example of this kind of subclass. The Limousine is a
specialized type of Car and performs more specialized actions than does a Car. The
Limousine does things that the Car cannot.

 Subclasses can also add missing functionality to parent classes that are only
partially defined -- in other words, the parent class begins the definition of a set of new
data types and each subclass completes the specification of one new data type. This is a
perfectly legal way of writing a special type of parent class called an abstract superclass.
An abstract superclass is never used by itself -- its sole purpose is to provide common
actions to a set of subclasses. An example of this would be an array, which is a fixed-size
list of items. Although we can place some common actions to be performed on the array
in the parent class (such as rearranging the array), we can’t fully complete the code for
the array unless we know what type of data we’ll be placing in the array -- will the array
contain characters, integers or real numbers? Obviously, if we specified the type of data
in the parent class, the array would store only that type of data, reducing the flexibility of
the class Therefore, we make the parent class Array an abstract superclass, leaving its

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

133

definition incomplete. We then subclass Array to define arrays for specific types of data
such as IntegerArray, NumberArray or CharacterArray. We’d fill in the data type-
specific code in the subclasses.

 The additional methods in the subclass can not only add new features to the
subclass, but they can be used to remove features of the parent class that are no longer
needed. So, for example, if a Limousine no longer needed to shift gears at all, we could
simply write a new Shift method for the Limousine that was empty. The Limousine
therefore could not accidentally perform a gear-shifting operation.

Polymorphism

 Another powerful feature of classes is polymorphism. Let’s say you’ve created
some classes to represent geometric shapes for a drawing program. Starting with a
general Shape class, you could create subclasses such as Circle or Square. When you
wish to draw shapes on the screen, wouldn’t it be nice if we could just ask each shape to
draw itself without having to know in advance which shape object you’re sending the
request to draw? We could just send the same request (“Draw”) to either class with the
same result -- the shape would draw itself correctly. A Circle would “know” to draw
itself as a round shape, and a Square would “know” to draw itself as a four-cornered
shape.

 The same Draw request would mean different things, depending upon which type
of shape we wanted to draw. Polymorphism is the ability to send the same request to
different objects and have each perform its own object-specific actions correctly. It is
accomplished by providing class methods with the same name in a parent class and its
child classes (in this case, Draw) whose code differs in each class (see Figure 9.10). The
Draw method in the Circle or Square subclasses overrides the code of the Draw method
in the Shape superclass, so that while the Draw class method performs the same action
in each class -- drawing -- the precise steps required to do the drawing will differ for the
Circle or Square.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

134

By The Way...

The C++ programming language distinguishes between
overloading and overriding. Overloading is a general term used
to define the process by which one class method (or function in
C++ parlance) can be called in place of another class method
with the same name. In C++, however, it is used specifically to
denote the calling of one class method by another of the same
name in the same class. For example, two class methods named
Multiply might exist within the same Complex number class --
one that multiplies a complex number by another complex
number, and the other that multiplies a complex number by a
floating-point value. In C++, the precise Multiply class method
called would be determined by the input parameters fed into the
method -- two complex numbers or one complex number and a
floating-point number. One Multiply method overloads the other.
Prograph does not have such a mechanism.
Overriding, on the other hand, is the calling of a method in a
subclass of a class rather than the method of the same name in
the superclass. For example, in the Shape example given above,
requesting that a Circle execute its Draw method means that its
superclass’ Draw method (in the Shape class) will not be
executed. The subclass’ method overrides that of the superclass.
In Prograph, overriding is permitted, and forms a major
mechanism by which subclasses can have different actions than
their parent classes.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

135

.

Object Shape

Size
Location

Move
Draw
Rotate

Program

Object Square

Size
Location

Move
Draw
Rotate

Object Circle

Size
Location

Move
Draw
Rotate

Square
drawn!

Circle
drawn!R

equest =
 "D

raw
"

R
eq

u
es

t
=

 "
D

ra
w

"

Figure 9.10: Polymorphism -- sending the same request to more than one
class

 Until we discussed polymorphism, when requests were sent to objects to perform
a specific action, the programmer knew when writing the code which objects would be
sent the requests and which class methods would perform the actions requested. The
Prograph interpreter or compiler would also “know”. This is known as early or static
binding. Polymorphism, on the other hand, accounts for situations where the
programmer, interpreter or compiler doesn’t know in advance which object will be sent
the request -- it could be any one of the subclasses sharing the same class method name.
This situation is known as late or dynamic binding.

 Polymorphism is especially helpful when we deal with lists of objects. If our
drawing program had a list of shape objects that would all be drawn on the screen, we
could just iterate through the shape list, sending each shape object in the list the identical
Draw request. The request would be given to several different classes on each iteration
through the list. The list iteration code would draw all of the shapes on the screen
properly with the same Draw request since each shape in the list would “know” how to
draw itself on the screen. The program would “blindly” call the Draw method of each of
these shape objects without knowing which type of object was being sent the request.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

136

Figure 9.11: Using polymorphism to process a list of objects

Deciding What the Classes and Objects Should Be

 We now know that programs can be organized as sets of objects. But how do we
know just what those objects should be? How do we go about designing an object-
oriented program? Let’s look at some basic principles of object-oriented design (OOD).

For More

Information...

The focus of this book is on learning visual programming using
Prograph rather than generic object-oriented programming, and
space prevents an in-depth discussion of program design
considerations. For more thorough guidelines for applying
object-oriented design, see the reference list of OOP books in
Chapter 18.

English Descriptions

 The first step in designing classes and objects is simply to write down in plain
English a thorough description of the problem that you want your program to solve, in as
much detail as possible. This description of what the program is required to do is called
the program specifications. Next, look at the description you've written and make a list of
the nouns and verbs in each sentences of the description. The nouns correspond roughly
to the classes and objects you need to create. The verbs denote the actions you need the
classes to do -- in other words, the class methods. While real-world objects named by
nouns, such as dogs, trees or floppy disks can be represented as classes, remember that
imaginary things -- concepts -- can also be classes if they can be described concretely.
So, for example, a unicorn could be a class, even though unicorns don’t actually exist. A
complex number can be a class even though it is merely a mathematical concept. Verbs
are actions of the objects. If a complex number can be added, subtracted, multiplied or

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

137

divided, these will form some of the class methods for the complex number class -- Add,
Subtract, Multiply and Divide.

 Let’s return to our racing simulation program. A first attempt at describing the
program might read as follows: “A car will be driven by a driver. The driver must avoid
hitting other cars and all obstacles.” Granted that this isn't a very good description of a
complete program, since it lacks many details of actions that the car and driver can take,
but let’s start with it. What would our classes be? The nouns in the sentences are car,
driver and obstacle. These would form our initial candidates for objects -- Car, Driver
and Obstacle.

 The next step is to refine these initial choices for classes. We can ask ourselves
whether all of these classes are really necessary, and whether each potential class is
clearly defined. How about our choice of Obstacle? What is an obstacle? An obstacle
could be many things, such as a wall or another car. The concept of an obstacle therefore
isn’t very well defined. We should probably eliminate the Obstacle class, or rewrite our
program description to better define what obstacles our car should avoid, then make these
into classes, such as Wall or Pedestrian.

 Once the classes are defined, we then determine what actions the classes should
be able to do. The action verbs in our program description correspond to drive (Car),
avoid hitting and driven by (Driver). These actions are still pretty general at this point,
and could form some high-level class methods -- Drive (classes Car and Driver), Avoid
Collision (class Driver), etc. But to be able to perform these actions, we must define
some more specific, simpler actions. For example, what does a Car “driving” involve?
The Car must accelerate, brake, turn and shift. These simpler actions will become
additional class methods -- Accelerate, Brake, Turn and Shift -- that will themselves be
called by the general Drive method of Car. These simpler methods will be easier for us
to write than the less-specific Drive method. In general, it’s a good idea to write both
general-purpose and narrowly-focused methods. The general-purpose methods get the
larger task done, and the narrowly-focused ones help you write simpler code. This sounds
a bit like top-down procedural code, doesn’t it? It is, except that here we try to break
down general object-oriented class methods into more specific object-oriented class
methods.

 Another advantage of including smaller, narrowly-defined class functions is that
they can be “reused” within the class itself. For example, how would a Driver ”drive”?
The Driver would try to avoid collisions, watch for other Cars, and get his or her own
Car to accelerate, turn, brake or shift. Each of these tasks is a method for the Driver
class -- Watch Cars, Accelerate, Turn and Brake. Now what about the task of
“avoiding collisions”? This involves some of the same tasks -- Watch Cars, Turn and
Brake. We may call these same methods from the Avoid Collision method.

 What should you look for as good candidates for classes? Budd (see references in
Chapter 18) describes four major categories of classes: (1) Data Managers, Data and

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

138

State classes are those that maintain data or the state of an operation. Our Car class
would be an object of this type, since it maintains data about the owner of the car and the
type of car parts, and maintains the current state of the car, such as its current speed and
direction. (2) Data Sinks or Data Source classes generate data or modify it. A random-
number generator class would be a type of data source. (3) View or Observer classes are
used to display data on a computer screen. These are representations of how our other
objects should appear on the screen if they were to be drawn. So, for example, we could
create another class called CarView that would contain the representation and methods
for drawing our Car on the screen. It's a good idea to separate your data type from the
class that determines how that data will be drawn. This way, you can more easily modify
your program to work on different graphics devices, or port the program to other
computers. (4) Facilitator or Helper classes exist solely to help other classes do their own
functions. A common example of a helper class is a sorted list class.

 Sometimes as we write descriptions of programs, the nouns are accompanied by
adjectives such as “a text file” or “a rounded rectangle”. Watch for these! These may be a
clue to the need for another type of object. Instead of using a class Rectangle, you might
want to use a more specific class called RoundedRectangle. We’ll talk about how to do
this when we discuss how to design subclasses.

 As you continue to design your program, you will probably find that your
program specifications become more focused, and some of the classes that you initially
planned weren’t as good as you first thought they’d be. Either these initial classes wind
up to be too hard to design clearly, or the implementation details of their class methods
are too difficult to write, or the objects don't really meet the specifications of the
program. Don’t be discouraged by this. Program design can be a continuous, evolving
process. As the program specifications are refined, you’ll refine your notions about what
your objects should be and what they should do. This is called stepwise refinement. OOP
and Prograph both support stepwise changes in classes and programs very well. As you
gain more experience using OOD, you may be able to choose better initial classes, but
your programs will still almost always go through a stepwise refinement process.

Exercise 9.2:
Write a complete description of a program that will catalog the files stored on your
computer’s hard disk and floppy disks. Find the tentative classes that this program can
use and the attributes and methods of the classes.

Class-Responsibility-Collaborator (CRC) Cards

 Once you have some idea of what your classes should be, you can progress to a
more exact design technique for constructing the inner workings of the classes. One
widely adopted technique uses Class-Responsibility-Collaborator (CRC) cards, shown in
Figure 9.12. The CRC card derives its name from the fact that its information was
originally written on an index card.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

139

Class

Responsibilities Collaborators

 What actions
the class should
 perform
 (Methods)

What other
classes this
 class will
interact with

Name of the class

Figure 9.12: CRC card specification of a class

 On the top of the CRC index card, we write the name of the class we are
designing. On the left side of the card, we list the responsibilities of the class -- the tasks
that the class is supposed to do. Each of these responsibilities will eventually be
translated into a class method or group of class methods. On the right side, we list the
collaborators of the class. Collaborators are all of the other classes upon which this class
depends to get its job done. For example, our Car class is dependent upon the Driver
class. These two classes must intercommunicate if the Car is to be able to drive. The
Driver class is therefore a collaborator of the Car class. A CRC card for our Car class
would look something like Figure 9.13.

Class Car

Accelerate

Brake

Shift

StartIgnition

Steer

Responsibilities Collaborators
Driver

TrafficSignal

Figure 9.13: CRC card for the Car class

 This CRC card is a concise representation of what tasks the Car class needs to do,
and what other classes it must work with to do these tasks. The list of responsibilities is
kept as short as possible so that the class does not become a huge collection of methods,
which would defeat the purpose of building tightly-knit classes. A good rule of thumb is
that the list of responsibilities of a potential class should not be so long that it can’t fit on

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

140

one side of an index card. If a potential class has too many responsibilities, you should
think about whether that class should be split into two classes with fewer chores
performed by each.

 Why do we need collaborators at all? If a single class did everything for your
program all by itself, it would be extremely hard to write and modify. For example, try
writing a class called Government that carried out all of the duties of a country's
government. This would be a monumental chore! How would you even begin to do it? It
makes more sense to split apart the duties of a complicated class so that they're carried
out by a handful of simpler and smaller classes that interact with each other. The huge
number of tasks that the Government class would need to do would be more easily
carried out by Military, Judicial, Legislative and Executive classes, to name a few. Each
of these classes would have to handle a narrower range of responsibilities, making the
writing and testing of each class easier.

 Once you’ve fleshed out your potential classes in this manner, you may wish to
use the back of the index card to start listing the internal attributes of each class. Once
again, try to keep your list of data items as short as possible without compromising the
function of the class.

Exercise 9.3:
Using 3” by 5” index cards, construct CRC card diagrams for the classes you chose to
use in Exercise 9.2, modifying the class definitions if necessary.

Changing a Class’ Behavior by Subclassing

 Earlier, we touched upon a means of reusing our existing classes when creating
new classes. This process was called subclassing. The original class is called a superclass
and the new, more specialized classes are called subclasses. After designing initial
classes with the CRC card method, we may start thinking about class hierarchies --
families of classes that are designed to be as reusable as possible.

Finding Subclasses

 When we started designing classes for our programs, we first looked at nouns
contained in the sentences of our program description. Now we need to look at those
nouns again so we may refine our design. In our driving simulation example, we settled
on a car as a potential class. Now we must ask ourselves if a Car would really be the
simplest object we could construct. Would a Car class be very reusable? Would it allow
for the minimum amount of code rewriting if we wanted to make new subclasses based
upon the Car?

 A car is already a fairly specialized thing. A car is just one type of vehicle.
Vehicles encompass all wheeled transportation devices, including cars, trucks, vans,

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

141

motorcycles, etc. So we'd be better off starting with a more general Vehicle class rather
than a Car. Vehicle would be a better starting class since we could easily subclass it to
make other types of conveyances besides cars. A car is a type of vehicle, but so is a truck,
a minivan, a motorcycle or a bicycle. In fact, this is the basic rule of finding subclasses to
create. It's called the “is-a” relationship. If a car is a vehicle, then class Car should be a
subclass of class Vehicle.

 We can carry this one step further. Vehicles are themselves a type of transporter -
- they are wheeled transporters that transport people and goods. Other types of
transporters that don't have wheels, but still carry things, are boats and planes. We could
create a Transporter class, then subclass it to make any type of transporter or vehicle.
All actions and attributes that are common to all transporters would be written once for
the Transporter class, then all of these possible subclasses would simply reuse them. We
might then create special types of transporters for use on the ground (Vehicle), in the air
(AeroTransporter, for want of a better term) and in the water (AquaTransporter).
These would then be subclassed again to create specific classes such as Car, Boat,
Plane, etc.

Figure 9.14: A class inheritance tree

 Just what have we been doing so far? We've looked for the common behavior of
several classes and “factored it out” into a more general superclass. The common
behavior is carried out by one set of common attributes and class methods. More

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

142

specialized classes built upon the superclass would only need new attributes and methods
to account for any changes in their behavior relative to the superclass. If your program
might use two or more classes that are very similar and that have a lot of similar methods,
consider using a more general class as the superclass of the two classes and moving their
common code to the superclass. In fact, even if you don’t need a more general superclass
for the program you’re writing right now, you might create it anyway so it will be
available for you to use in later programs. Exactly how general you make your top-most
class depends upon how much you expect to reuse the classes in the present program and,
in more realistic terms, how much of a rush you’re in to get the @#$%&* program
running!

Exercise 9.4:
Design a class hierarchy for warm-blooded animals such as dogs, lions, monkeys, etc.

 Try to start with general classes that can encompass the actions of several
potential classes. These will form abstract superclasses that you will then subclass.
Remember that abstract superclasses themselves are never used to create objects -- only
the subclasses that inherit from the abstract superclass are used to create objects. For
example, a Shape would be an abstract superclass. You’d never make an object from a
generic shape, since it wouldn’t be useful. You’d make objects from subclasses of
Shape, such as Circle or Square. The Shape class is used solely for the purpose of
subclassing and code reuse. All behavior that’s common to all shapes is implemented in
the Shape class. When a specific type of shape is needed, the subclasses of Shape are
used to create objects with more specific behavior. The benefit of the abstract superclass
is that it can be used over and over again to create other subclasses easily. Since you’ve
already implemented the behavior that’s common to all shapes, all you have to write is
what makes a new shape different from a general shape.

 As another tool for finding common superclasses, Wirfs-Brock, Wilkerson and
Wiener suggest drawing Venn diagrams. If the sets defined by two of your potential
classes overlap, then they must share a common superclass.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

143

Figure 9.15: Determining a candidate for a superclass via a Venn diagram

Software Reuse -- Extending a Class with Composition (Incorporating
Instances of Other Classes)

 Subclassing or inheritance was defined as satisfying the “is-a” relationship. There
is a second type of relationship that objects can have, which defines another way of
reusing code. This relationship is called the "has-a" relationship, and the class design
technique is called composition. If two classes can be related by a “has-a” relationship,
then one class should contain an instance (object) of the other object. For example, in our
Car class, a Car has an engine, has tires and has an owner. The Car class should
therefore contain an object of the Engine class or an Owner class (if you wish these data
to be represented by objects) included in its attributes. Remember that classes can contain
any data element type in its attributes, even instances of other classes.

 The objects contained inside another object can be accessed by the containing
object. This is another form of collaboration between classes. It can be quite helpful in
situations where one class performs duties that are also useful for other classes. If we
include an instance of Engine inside our Car to become one of a Car object’s attributes,
the Car will be able to get its Engine to do things without needing to know how the
Engine actually works. This is therefore also another form of information hiding --
taking advantage of classes without needing to know how they accomplish their tasks.

Class Car

Attributes Methods

Engine

Tires

Owner

Drive

Accelerat
eBrake

Shift

Class Engine

Class Tires

Figure 9.16: Composition -- placing instances (objects) within classes

 Another example of the use of composition is the design of a Rectangle class. A
Rectangle is composed of four lines, which can each be defined by a Line object. An
object created from the Rectangle class could therefore itself contain two objects of the

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

144

Line class. Lines themselves are each specified by two points -- the endpoints of the line.
So the Line class could also contain two instances of a Point class.

Class Rectangle

Attributes Methods

Line 1

Line 2

Line 3

Line 4

Class Line

Point 1

Attributes Methods

Point 2

Class Point

X

Attributes Methods

Y

Figure 9.17: The use of composition for graphical constructs

Exercise 9.5:
Design a Human Being class with composition, using individual classes for body parts.

Summary

 Object-oriented programming (OOP) helps to reduce some of the problems
inherent in large programming projects. The proper use of OOP makes programs more
easily maintained, modified, extended and debugged.

 The most important construct of object-oriented programming is the class, which
models real-world concepts or objects in software.

• Classes are composed of both data (attributes) and code (class methods).

• The attributes of a class represent both the class’ traits, what makes this class

different from other classes, and its current state.

• The class methods of a class delineate what actions the class can carry out.

• Classes are templates for the creation of individual instances, called objects,

which are typically used as variables in programs.

• In the Prograph language, attributes can be further subdivided as either
instance attributes, or class attributes. Instance attributes have values that

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

145

differ from one object to the next, and differentiate each particular instance of
the class. Class attributes have the same value for every object created from
that class, and serve as shared data.

• “Communication” with objects is accomplished by sending requests to the

object to perform actions. The object executes one of its class methods to
satisfy the request. Our program can send a request for action to an object, or
one object can send a request to another object.

 Object-oriented programming is defined by three major characteristics:

• Data abstraction is the ability to create new data types with a class.
Encapsulation is use of these new data types in programs without needing to
know how their inner workings are defined.

• Inheritance or subclassing is the creation of new classes (subclasses) that

reuse portions of the original class (superclass), but also add new features to
extend or their usefulness or make the class more specific with a minimum of
reprogramming.

• Polymorphism is the ability to request the same action from different objects,

and have these different objects automatically perform these actions in slightly
different ways that are specific to their own classes. Polymorphism is one way
to accomplish dynamic binding, where the application code does not know
which object’s method is being called until run-time -- the same request can
be sent to any one of the subclasses of a given parent class without the calling
code “knowing” in advance which subclass receives the request.

 In this chapter, we described methods for determining what the classes and
objects of your programs should be, as well as how and when you should be using
inheritance or composition (instances of classes embedded within other objects) to add
new features to classes.

• Inheritance is used to satisfy an “is-a” relationship between classes, such as a
car is a type of vehicle. Therefore, a car should be a subclass of a vehicle.

• Composition is the placement of an object of one class within another class,

and is used to satisfy an “has-a” relationship between classes, such as a car
has an engine. An engine should be an instance of an Engine class placed
within an instance of a Car class.

 We’ve covered quite a lot of ground in this chapter. At this point, OOP is just a
theoretical construct to you. Now we’re going to reinforce what you’ve learned in this
chapter by showing you how to apply object-oriented programming principles to
Prograph programs.

