
Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

161

11. Extending Classes -- Subclasses and Inheritance

Overview

 The code we write to carry out a particular task is rarely needed only once in the
same form. More commonly, we must perform similar but not identical tasks in other
programs, or must modify a task for updated versions of a program. As an example, we
may need one program to save text files, and another to save graphics files instead. In
procedural programming, reworking the methods that handle text files to make new
methods for graphics files could be tedious and error-prone. In many cases, one would be
tempted to just throw out the code for handling text files and start programming again
from scratch to make a program using graphics files. This can be a tremendous waste of
time and effort.

 OOP has built-in mechanisms for making changes in programs while minimizing
the need to write new code. One such mechanism is inheritance -- the improvement or
specialization of existing classes by creating new subclasses from them. In this chapter,
we’ll use inheritance to create systems of related classes that share code. We will also
examine composition -- the reuse of existing classes by enclosing one object within an
object of another class -- to add the features and actions of one class to those of another.

Subclassing (Inheritance)

 Subclassing is the addition of new functionality to a pre-existing class by deriving
a new class from it. The new subclass automatically reuses any parts of the original
superclass that are still useful. A subclass is defined solely by additions or changes from
its superclass. This represents a substantial savings in coding effort for new tasks -- we
can write only small changes in classes rather than starting all over again to suit each new
situation.

 In the file format example mentioned above, we could start with a general File
class that would encompass most of the activities required for file reading and writing.
We would then subclass the File class to produce a more specialized TextFile class for
one program, and subclass it to make a GraphicsFile class for the other program. Each
subclass would inherit general file-handling code from the File class. The programmer
would only have to add the specific code needed to represent the text or graphics in a file
-- the changes needed for the TextFile and GraphicsFile subclasses. All the rest of the
code needed for each would already be present in the File superclass.

 Let’s progress to a concrete example. Prograph supplies you with a built-in list
data type. Lists, you may recall, are collections of data elements. Data elements may be
added to or removed one at a time from the list, and operations performed upon the list as
a whole. You could mix different data types in a single list, such as integers and reals and
Booleans, etc. Those who have programmed in other computer languages like C or C++

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

162

might be more familiar with the concept of an array -- collections of a fixed length that
contain a single data type. All elements of the array are created all at once. Once created,
you can access or set any element within it in any order. Dynamic arrays are a special
type of array whose length can be resized should the need arise, say, if the array holds 50
items but now you need to hold 55 items.

 In this chapter, we will create a generic dynamic array class called Array, then
subclass it to produce classes for arrays of integers or real numbers. This is where the
power of object-oriented programming shines -- the ability to create new data types that
are not supplied by the programming language itself. In this case, we’ll use OOP to
mimic a data type that is present in other computer languages but not Prograph. Our
generic dynamic array class will provide the ability to create an array, destroy it, initialize
the elements within it to known values, resize the array to a larger or smaller length, and
get or set the value of any individual element. The RealArray subclass will store real
numbers as the elements in the array, while the IntArray subclass will do the same for
integers. New subclasses such as OffscreenArray (an array of off-screen graphics
representations) could also be built just as easily from the Array parent class.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

163

By The Way...

Why do we need separate subclasses for integer arrays and
floating-point arrays? In languages such as C++, separate data
types are needed to store integer and floating-point arrays
because each requires a different amount of memory storage and
a different “spacing” between one element of the array to the
next in memory. Different array types allow each type of data
stored in the array to be stored and accessed as efficiently as
possible. But in Prograph, both a list could be used as an attribute
to store the array elements. Lists don’t care what type of data
they contain, so we should be able to store either integers or
floating-point numbers in the same list. Lists would handle both
element storage and access for us regardless of the type of data
the list contained -- the data will be stored and accessed the same
way for both types of data. Wouldn’t this mean that a single
Array class could serve to hold either integers or real numbers?
Actually, the advantages of lists are also a liability -- the reason
why we do need to subclass the Array class for each data type.
How do you ensure that the list will hold a single particular data
type if you want it to, that is, only integers or only reals?
Remember that Prograph is an untyped language. The list won’t
check whether or not the type of data you are trying to stuff into
it is correct or not. It is up to you to do data type-checking
yourself! If the list attribute that stores your array elements sends
its data to fast integer-only math primitives and you didn’t ensure
that the array contained only integers, your program will result in
an error. We must perform type-checking on the data stored in
the array’s elements by writing specific subclasses of an Array
class that will each contain class methods that will ensure the
storage of only the appropriate data type for that class. That is, an
IntArray subclass will enforce the storage of only integers while
a RealArray subclass will enforce the storage of only real
numbers.

Abstract Superclasses

 Start by creating a new section called Arrays. We will store our three array classes
(Array, RealArray and IntArray) in this section so that we can reuse them later. Get used
to storing classes and their descendants in sections. You can add these sections to later
programs to reuse the classes. A similar process is used for easily handling user interfaces
for your programs by loading sections of pre-written classes called the Application
Builder Classes (see Chapters 14-16) into your own programs.

 Create a new class in the Classes of “Arrays” window and call it Array. This will
be an abstract superclass -- a special class that is never used to create objects itself, but
exists solely to be subclassed. You never use objects of abstract superclasses themselves,
so we must prevent the superclass itself from creating its own array elements. The data

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

164

type of the array elements is set in the subclasses of Array -- only RealArray and
IntArray can create array elements, specifically of type real or integer. Since each type of
array can only contain a single data type, each array type needs to check what kind of
data it is receiving when setting an array element, or when copying another array into
itself. The code that checks data type therefore is also specific to each subclass. This is
why Array must be an abstract superclass -- too many of its implementation details
can’t be specified until we make subclasses from it.

Figure 11.1: The Array abstract superclass

 Open the Attributes window of the Array class and create two attributes. The first
will be an integer called length that will keep track of how many elements are in the
array. The second will be a list named arrayList that will hold the array elements. We are
designing the Array class to create a new data type that extends or modifies the behavior
of a pre-existing data type (a list) to fit a new set of applications.

Figure 11.2: Attributes of the Array superclass

 What happens when we no longer need to use the Array? We remove all of the
array elements from the arrayList. The Free method (Figure 11.3) accomplishes this task
by setting the arrayList to an empty list, then resetting the value of length to 0. This is
accomplished the same way for any type of array, so the Free method may remain in the
Array parent class.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

165

Figure 11.3: The Free method

 Two important class methods for the Array class are the GetElement and
SetElement methods, which access and set one element of the array, respectively. You
may ask “The array is stored in the arrayList attribute -- couldn't I simply use a Get or
Set method to read or write an element of the array in my programs?” Well, yes, you
could. OOP purists would argue that using a Get or Set method directly would allow your
programs that use the Array class unwanted access to the inner workings of the class.
Remember that one advantage of OOP is encapsulation -- insulating the user from the
details of how the class is constructed and coded. If the user of the class directly accessed
the attributes anywhere in their program, mistakes could be made. Ideally, the user should
only access the class with methods we’ve defined as the class interface. So long as the
user calls only those methods in the class interface, they won't accidentally corrupt the
arrayList contents. Get and Set methods are really meant to be used only within other
class methods, not by the user of the class. To preserve the integrity and safety of the
class interface, we’ll provide class methods to give the user a way to read or write to
array contents without directly using Get or Set. These methods will then in turn call the
arrayList Get and Set methods within their own code, hidden from the user.

 There’s a second reason why we include our own GetElement and SetElement
method, but this reason is more practical. We could easily use a Get method to access
array data and then just reuse this code in both array subclasses, since a Get method
would return whatever type of data we’ve stored in the array. However, we are
responsible for providing our own individual methods to set the array elements for each
subclass, or else the arrays might not hold one consistent type of data. If we just wrote a
user-defined SetElement method, it would use different data access techniques than
would a built-in Get method. For consistency of class access, we’ll write both
GetElement and SetElement methods so that each uses the same technique to access
the array’s list data. The user can therefore read and write array data using consistent
syntax.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

166

 The degree of encapsulation afforded by writing our own GetElement and
SetElement methods also allows us to do automatic tasks every time an array element is
read or written. Remember that the use of arrays poses the risk of trying to access array
members past the end of the array. In the GetElement method, whose first case is
shown in Figure 11.4, we can first check if the user is trying to access an empty array or
an element beyond the end of the array. If so, an error message is displayed by a second
case.

Figure 11.4: First case of the GetElement method

 Similarly, SetElement (Figure 11.5) also checks if the user is trying to write an
element to an empty array or beyond the end of the array, and displays an error message.
This method replaces the contents of an element of the arrayList with a new value by
calling the set-nth! primitive. Notice that this method does not care what type of
data the new value of the element should be. This data type checking will be handled by
the subclass, as we’ll see shortly.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

167

Figure 11.5: First case of the SetElement method

 The Array class will contain two more methods. We’ll defer discussion of these
two methods for now.

IntArray -- The First Subclass of the Array Class

 Now comes the fun part. We will subclass the general-purpose Array class to
form two new classes for storing arrays of integers and real numbers. The same principles
can be used by you to make other new array types for Booleans, Macintosh data types
such as Pictures, etc.

 Return to the Classes window. Highlight the Array class icon. While pressing the
option key, create a new icon below the Array class icon. Name this new class icon
IntArray. The link between the two class icons, analogous to a datalink, shows that the
IntArray class is a subclass of the Array class, as shown in Figure 11.6. Once again,
visual programming makes program components easier to understand. The link between
the classes in the Classes window makes their superclass-subclass relationship obvious.
In the equivalent C++ code shown, this relationship is less obvious since the declaration
of both the superclass and the subclass looks so similar.

class Array {
 // Class contents
};

class IntArray :
 public Array {
 // Subclass contents
};

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

168

Figure 11.6: Subclassing the Array class to make a new IntArray class,

shown with its C++ language equivalent

 Open the Attributes window of the IntArray class by double-clicking the left side
of the class icon (see Figure 11.7). Notice that the IntArray class has come equipped with
the same attributes as the Array class. These attributes have been inherited automatically
from the Array class when you subclassed IntArray from Array.

Figure 11.7: Inherited attributes in the IntArray subclass

 There is one difference between IntArray’s attributes and Array’s attributes. The
symbols for the attributes are different. The arrow within IntArray’s attribute symbols
reminds you that these attributes have been inherited from the superclass of IntArray
(Figure 11.8). In Prograph, you can examine all of the attributes in a subclass, yet still
keep track of which attributes are inherited and which are specific to the subclass. This
differs markedly from the notation used in C++, where inherited data members are not
listed at all in a subclass -- the programmer must remember the data members of the
parent class.

Original Attribute
in class Array

Inherited Attribute
in class IntArray

Figure 11.8: Inherited attributes

Instance or Initialization Methods

 The first method we will write for the IntArray class is a special optional method
used solely when creating objects from classes. When we create a new object, the
object’s attributes’ initial values are set to the default values we give them in the class
definition. But what if we don’t know the value of an attribute until run-time? We
certainly can’t just use the default value -- it may not always be the value we’ll need.
Luckily, we have an easy way to set attribute values when we create an object. We do
this by writing our own initialization or instance methods. These methods are called

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

169

automatically right after you create (instantiate) an object. Within the initialization
method, you can include code to set any attributes you want and override their default
values, or allocate memory. In this respect, instance methods are the counterpart of C++
constructors, which automatically initialize C++ classes. However, Prograph does not
provide the equivalent of C++ destructors, which are called when an object is destroyed.
Any memory allocated by a Prograph initialization method must be freed explicitly when
the object is no longer needed. It is the programmer’s responsibility to remember to do
this by writing a method to do so which will be called when the instance will no longer be
used.

 We will create an initialization method for the IntArray class that will set the
number of array elements contained in each IntArray object at runtime, then allocate
enough memory for the arrayList attribute to hold these array elements. Create a new
class method in the Classes window. While the new class method icon is still highlighted,
select the Instance menu item. The method icon changes to an Instance icon, showing
that it's an Instance or initialization method. The name of an initialization method is
always set to “<<>>”.

 Remember what makes the IntArray class different from the generic Array --
IntArray stores only integers. When we need to create elements to store in the arrayList,
we must create integer data. The Array class, an abstract superclass, was prevented from
creating any elements of its own (since their type would be unspecified) by purposefully
omitting an initialization method for that class that would fill the arrayList with
elements. For the IntArray class, we’ll want to create integer elements, so we’ll write an
initialization method for it that explicitly creates a list full of integers.

By The Way...

Although we could not prevent the user from instantiating an
Array (generating an Array object), we did the next best thing --
we prevented the user from doing anything practical with the
newly-created Array object by not permitting an empty arrayList
to be filled or accessed.

 Open the new initialization method and complete its code diagram as shown
below in Figure 11.9. This method simply sets the length of the array and calls the
make-list primitive to create an entire list all at once. The second input (the integer 0)
to the make-list primitive tells the primitive to initialize each element of the
IntArray’s arrayList to the integer zero. This initialization method is doing more
than just setting the value of an attribute at run-time. It is also automatically allocating
memory for the array’s elements and setting their data type when the IntArray object is
created. This is what makes initialization methods so powerful.

 Another powerful feature of Prograph instance generators is that they accept one
very important input -- a list containing values for the attributes of the object to be
created, which provides another way in which they can be initialized. Why is this so
important? This feature allows us to specify and set the length attribute that determines

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

170

the number of elements of the arrayList at the time that we create an object of type
IntArray. If we input an attribute initialization list to the IntArray instance generator of
IntArray, the value of the newly-formed IntArray’s length attribute can then be used by
the initialization method we’ve written. For example, if the attribute initialization list
contained an element setting the length attribute to 10, the newly-created IntArray object
would be initialized by our initialization method to have a length of 10 and an
arrayList containing 10 elements. We’ll see how this works when we put the
IntArray class to use.

class IntArray {
public:
 IntArray(short length
);
private:
 int *fArrayList;
 short fLength;
};

IntArray::IntArray(
 short length)
{
 fLength = length;
 fArrayList = MakeList(
 fLength, 0);
}

Figure 11.9: The Instance or initialization method for the IntArray class with
an equivalent C++ constructor

 Changing the size of an existing IntArray now becomes an easy process, since it’s
very similar to the steps we’ve taken in the initialization method. The Resize method
(Figure 11.10) checks the current value of the length attribute and compares it to the
requested new length. If the new length is larger than the current length, the make-list
primitive is used to add new elements to the arrayList. It creates enough new elements to
cover the difference between the new length and the old length.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

171

Figure 11.10: First case of the Resize method

 If the new length is shorter than the current length, a second case is entered in
which the arrayList is partitioned with the split-nth primitive to “slice” the array at
its desired length and remove the proper number of elements from the arrayList. This
second case is shown in Figure 11.11.

Figure 11.11: Second case of the Resize method

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

172

 Finally, just in case the user accidentally requests a new length that’s just the
same as the old length, we enter a third case that appropriately does nothing.

Figure 11.12: Third case of the Resize method

Overriding and Accessing Superclass Methods

 When we subclass, do we have to rewrite every method of the superclass to
provide behaviors for the subclass? Of course not! This is one of the main reasons for
using object-oriented programming. We only have to rewrite those methods that will
specifically change the behavior of the subclass relative to its parent class. The remaining
methods -- in which the subclass does the same thing as its superclass -- are simply
inherited and reused as is without rewriting. If we did need to rewrite every method,
there would be no reason to subclass, since we wouldn’t save any time or effort.
Remember that another benefit of method inheritance is that if a method worked correctly
in the superclass, it will also work correctly in the subclass that inherits it. This means
that we’ll spend less time fixing potential errors in the subclass’ methods.

 Prograph will automatically inherit all of the superclass’ methods for us when we
create the subclass, just as it did for the attributes. All we create in the class methods
window of the subclass are either new methods or methods to replace methods of the
superclass. We give the replacement methods the same names as their corresponding
methods in the superclass. This process is called overriding or overshadowing.

 All we need to override are methods that must be changed if we are to give the
subclass different functionality from its parent class. Let’s override the SetElement
method for our IntArray class. Remember, we only have to write some of the methods
from Array -- the ones that will make an IntArray different from an Array.

 When we want to set new values for the integers stored in IntArray’s arrayList,
we must first check that the value we’re trying to put into the arrayList really is an
integer before storing it in the array. We can do this by overriding the SetElement class
method, adding code to check for the correct data type.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

173

 Create a new SetElement method in the IntArray’s class method window. Open
its case window and complete it as shown in Figure 11.13. Note that the C++ equivalent
code shown in Figure 11.13 isn’t quite correct -- we would not want the parent class’
SetElement() function to accept an integer argument.

class Array (
 // Class contents
 void SetElement(int);
};

class IntArray :
 public Array (
 // Class contents
 void SetElement(int);
};

void IntArray::SetElement(
 int newValue)
{
 if (sizeof(newValue) ==
 sizeof(int)) {
 // Call superclass
method
 ((Array*)this)->
 SetElement(newValue
);
 }
}

Figure 11.13: The overridden SetElement method and its C++ equivalent

 The integer? primitive checks the type of the incoming data to see if it’s really
an integer. If not, we enter a second case (not shown) that displays an error message. If
the data is an integer, we need to store its value in the appropriate “slot” of our integer
array. But how do we store the data? We could write code in this method to store the
data. But wouldn’t that be wasteful? We already have code in the Array class’
SetElement method that stores data in the arrayList. Why not just reuse that code?

 Prograph allows you to reuse code from a subclass’ parent class by using a special
superclass method call. It is set up by highlighting the desired method that you want to
call from the superclass in the current code window and selecting the Super menu item.
This converts an ordinary class method call to a superclass method call, as shown for the
call to the parent class’ SetElement in Figure 11.13. The reuse of the parent class’ code
saves us time. We’ll reuse this method once again when we write a second subclass --
RealArray -- which will save us even more programming time.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

174

 Reusing parent class code also saves us time when debugging by helping us find
potential bugs easier. Any potential problems encountered in setting array elements
would have to be localized solely within the Array class’ SetElement method, since this
method is called by any subclass of Array to perform this task.

One Form of Polymorphism in Subclasses

 Subclassing isn’t used only to change the existing behavior of a superclass. It can
also be used to add new actions to a class. We can modify the function of class methods
belonging in a parent class by using code in subclasses. Let’s do it now. We’ll create two
new class methods in the Array superclass -- Add and Copy. Add will add two arrays
together, element by element. Copy will copy all of the elements of one array into the
arrayList of a second array.

 We’ll start with the Add class method (see Figure 11.14). The Add class method
first checks the length of the Array we wish to add to our original Array. It then calls the
Resize method to change the length of the original Array if the second Array is a
different size. Once we’re sure that the arrayLists of the two Arrays are of the same
length, we add their elements together with the AddElements local method.

Figure 11.14: Add method of the Array class

 The AddElements local method gets the size of the original Array (now equal to
that of the second Array), then enters a loop that repeatedly calls the AddOneElement
local method until each element for the entire length of both Arrays has been added
together.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

175

Figure 11.15: AddElements local method

 AddOneElement simply gets the value of the array element at the same index
from each Array’s arrayList, adds them together, then stuffs the result back into the same
array element of the original Array. It starts with the last element of each (at index
length), then counts backwards to step through the entire arrayList of each.

Figure 11.16: AddOneElement local method

 That was pretty easy, wasn’t it? The Copy class method works almost exactly the
same as does the Add class method. Therefore, instead of explaining it in detail, we’ll
just show its code windows in Figure 11.17.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

176

Figure 11.17: The Copy method of the Array class

 What happens when an IntArray object’s Add or Copy class method is called?
Let’s look at the Copy method in Figure 11.17. This method first reads the length
attribute of the IntArray object. It then calls the CopyElements local method, which next

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

177

enters the CopyOneElement local method. What happens inside this local method? The
GetElement class method is called. But the calling IntArray object doesn’t have a
GetElement method! What code is executed? Simple -- the GetElement method that
IntArray automatically inherited from Array, since this is the only version of
GetElement that exists -- the only possible version of GetElement that it could execute.
The execution of the Add or Copy class method by a subclass of Array is therefore fairly
straightforward.

 On the other hand, let’s look at what happens when the SetElement method is
called within the Copy class method? Unlike GetElement, there is more than one
version of the SetElement method -- one in the Array class and one in its IntArray
subclass. Which version of SetElement will actually be executed? If an Array object’s
Copy method were to be called (that is, an Array object was the second input to the
Copy method), the Array parent class’ version of SetElement will get called. If an
IntArray’s Copy method is called (an IntArray object was the second input to the Copy
method), the IntArray subclass’ version of SetElement will get called by Copy. This is
an example of polymorphism at work. All the object (whether it’s Array or IntArray)
knows is that it needs to copy array elements with the Copy method. The appropriate
code will be executed by Copy for whatever type of array that receives the method call.

Creating a Second Array Subclass -- RealArray

 We now have a functional IntArray subclass that inherits much of its behavior
from its superclass, Array. What would happen if we now had to write a new program
that needed an array of real numbers instead of integers? In procedural programming,
we'd have to write a lot of new code. But with OOP, all we have to do is to define a
second subclass from the Array class that stores real numbers.

 Creating a second subclass from Array is just as simple as was creating the
IntArray class -- in fact, a bit simpler, since other subclasses of Array will be similar in
many ways to IntArray. We will now create a subclass called RealArray (see Figure
11.18) which will, as its name implies, store an array of floating-point numbers rather
than integers (and enforce that only real numbers be permitted in the array).

Figure 11.18: The RealArray subclass

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

178

 The attributes of this subclass, like those of IntArray, are inherited from the
parent class Array. The class methods of RealArray are quite similar to those of
IntArray, except that they deal with floating-point elements stored in the arrayList
attribute. First, the Instance (initialization) method, shown in Figure 11.19. This method
creates a list for the arrayList attribute, and initializes each member of the list to be a
floating-point number equal to 0.0.

Figure 11.19: Instance or initialization method of the RealArray subclass

 The SetElement class method of RealArray, like its counterpart in the IntArray
subclass, simply checks if the incoming data is of the correct type (in this case, a floating-
point value), then sets the arrayList member with the superclass’ SetElement method.

Figure 11.20: SetElement method of the RealArray subclass

 Finally, the Resize class method of RealArray performs the same actions as
does its counterpart in IntArray. The sole difference is that the make-list primitive in

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

179

its first case receives a floating-point value rather than an integer value for initializing the
arrayList members.

Figure 11.21: First case of the Resize method of the RealArray subclass

 What about the Add and Copy class methods? Once again, polymorphism will
ensure that these methods will work correctly. The Add and Copy methods, which we
have placed in the Array parent class, will be called appropriately when we use objects of
type RealArray. In addition, when a RealArray class method is called from within Add
or Copy (like Resize or the overridden SetElement method), the class method from
RealArray will be correctly executed.

Using the Array Classes

 The Array, IntArray and RealArray classes are now complete. With just a little
code, we have new data types that store integer or floating-point number arrays. The
arrays can be resized, copied to another array or added to another array. That’s a lot of
function from just a small amount of code. Let’s test these classes to see if they are doing
what we expect of them.

 Create a new universal method in the Arrays section called Test IntArray. This
simple example will show you how to create and use classes in your programs. Complete
its code diagram as shown in Figure 11.22. This method creates an object from the
IntArray class and sets its length attribute to 10.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

180

 Notice the strange way we’re doing this. Instance generators have one input and
one output. The output, of course, is an instance of the class -- the object being created.
But the input may either be left unconnected, or we may feed into this node a list of
values for the attributes of the newly-created instance. This list will be used to replace the
default values we supplied when we defined the class’ attributes.

 In our Test IntArray method, we’ve only included one of the class’ two attributes
in the attribute initialization list -- the length attribute. This is safe to do -- you can
initialize as many or as few attributes as you want this way.

 After the instance generator finishes its work, our custom IntArray initialization
method is called, which allocates ten elements for the arrayList, each with the integer
value 0.

 The Test IntArray method then sets each element in the array to a value of 1 by
entering a loop that repeatedly calls the SetElement class method. Next, we create a
second IntArray object containing only 2 elements, then copy the contents of the first into
the second one. Note that since the second IntArray is shorter than the first, it will be
automatically resized when the Copy operation takes place.

 Although we have not provided a show primitive call here to display the contents
of each integer array, their contents can be verified using the debugger. Before execution,
set a breakpoint on the Copy class method call within the Test IntArray method, then run
the Test IntArray method. When execution halts, select the Single Step debugger
command, then continue execution. After the Copy method executes, use the Value
dialog to read the contents of the arrays output from each of the Copy method’s terminal
nodes. You’ll find that each integer array now has the same contents -- ten list members
each set to 1.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

181

Figure 11.22: The Test IntArray universal method

 We now know that the IntArray class functions properly (the RealArray class
also works-- trust us, would we lie?). We can now use it just like any built-in Prograph
data type. To add integer arrays or floating-point arrays to your programs, all you need to
do now is select the Add Sections menu command, then choose the Arrays section. That’s
all there is to reusing classes you’ve written in new programs.

Exercise 11.1:

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

182

Computer languages like C and C++ include a special data type called a bit-field. This
is a Boolean-like data type that holds the value (0 or 1) of the bits in a byte, word or
long word. That is, a bit-field is a group of bit values combined to form a larger data
type holding the values of each bit in a byte or word. For this exercise, create a subclass
of Array called BitField that will hold an array of Boolean values, one Boolean for each
bit in a byte. Class methods should allow you to set, clear or test the value of each bit.

Composition

 While subclassing or inheritance is a powerful tool for reusing code, there are
applications for which subclassing does not work well. For example, look at the
relationship between a car and its engine. Suppose we wanted to use two classes -- Car
and Engine -- to represent them. Would we subclass Engine from Car? This would
make no sense at all. Remember that subclassing works well in “is-a” relationships. Is an
Engine a type of Car? Of course not. A Car has an Engine inside it, but an Engine is
not a type of Car. The "has-a" relationship is better satisfied by the use of composition
rather than subclassing.

 Composition is the placement of one instance of a class inside an instance of
another class. This requires a different means of calling class methods as did subclassing.
In subclassing, you either called the subclass’ class methods or the superclass’ class
methods, but the methods of one class rarely called those of the other or passed data back
and forth. You typically called either the parent class’ methods or the subclass’ methods -
- one or the other. In composition, this all changes. The object containing another class’
instance must frequently call the methods of the contained object, which might return
information back. We stated in Chapter 9 that large programs may consist of many
objects passing requests for action back and forth; that is, calling each other’s class
methods. Composition is a miniature version of such a program. In composition, requests
to perform actions (that is, class method calls) and data may be passed back and forth
from one object to another within a self-contained system of nested objects.

 We will demonstrate composition with a graphical shape class -- the Line class.
The class will define a line of a given length and orientation that can be moved, rotated,
scaled in size, or flipped over. Its length and orientation will be determined by the
position of the Line’s starting point and endpoint. Each position will be represented with
a Coordinate class, which stores a two-dimensional position that can be set or moved.
Therefore, we will first create a Coordinate class. Then we’ll design a Line class whose
objects will contain within them two instances of Coordinate’s. Whenever the Line is to
be altered in any way, the Line must communicate with one or the other Coordinate
within it.

 Create a new section called Shapes and open its Classes window. Create a new
class named Coordinate. Open the Coordinate attributes window and define two data
elements called x and y whose default types will be real (Figure 11.23). These will hold
the x-coordinate and y-coordinate of a location in two-dimensional space.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

183

Figure 11.23: Attributes of the Coordinate class

 The class methods of Coordinate are pretty straightforward. The GetPosition
method reads the values of the x and y attributes and returns them as the current position
of the Coordinate.

Figure 11.24: GetPosition class method of the Coordinate class

 Move does the opposite of GetPosition. It sets a new position for the
Coordinate by putting new values into the x and y attributes.

Figure 11.25: Move class method of the Coordinate class

 MoveBy is similar to Move, but repositions the Coordinate relative to its current
position. It accepts as input the amounts to move the Coordinate in the horizontal and
vertical directions and adds them to the current values of the x and y attributes.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

184

Figure 11.26: MoveBy class method of the Coordinate class

 Believe it or not, the Coordinate class is finished! All it really needs to do is
store a Coordinate’s current position or change its position by an absolute or relative
amount.

 Now let’s build upon the Coordinate class to create a more complicated data type
-- the Line class. A line may be described in one of two ways. Either we can just define
the position of its start and end, or we can define the line’s starting-point location, length
and orientation. We will combine both approaches for our Line class, providing attributes
that will allow for both strategies (Figure 11.27). When we want to define the line in
terms of length and angle, we’ll access its length and angle attributes. However, when
we want to define the line in terms of its starting and end positions, we will communicate
with two instances of the Coordinate class embedded within it -- the start and end
attributes.

class Coordinate {
 // Class contents
};

class Line {
public:
 // Class functions
private:
 Coordinate start;
 Coordinate end;
 float length;
 float angle;
};

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

185

Figure 11.27: Attributes of the Line class with their C++ language

equivalent

 We’d like the Line to perform several basic actions. To start, we should be able to
do simple tasks such as setting the Line’s initial length, position and angle, but let’s also
add more actions such as moving the Line to a new absolute position or a new position
relative to its current one, changing its length or rotating the Line by a user-defined
angle.

 Let’s look at these operations, one by one. Moving a line means resetting the
starting and ending positions of the Line. This requires communication with the Line’s
embedded Coordinates -- the Line must send messages to the start and end
Coordinates. We will do this in two different ways. To reset the start attribute to a new
location, we’ll call the start Coordinate’s Move method to do this for us.

 For the end Coordinate, rather than calling end’s Move method, we’ll use a
custom Set method for the Line’s length attribute that will as a course of its own actions
also set a new position for the end Coordinate. Why are we using such a convoluted
technique for setting the end position? This technique will ensure that the line endpoint
positions will be updated automatically whenever we set a new value for the length
attribute.

Figure 11.28: Move method of the Line class

 The MoveBy method, which moves the line to a new position relative to its
current position, is quite similar to the Move method. The only difference is that we call
the start Coordinate’s MoveBy method rather than the Coordinate’s Move method.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

186

Figure 11.29: MoveBy method of the Line class

 What about resetting the orientation of the Line? The same method used above
for the length attribute will work again here. We just add the angle by which the line will
be rotated to the current angle and call a custom angle Set method that will also
automatically reset the position of the end Coordinate like the custom length Set
method did (see Figure 11.30).

Figure 11.30: RotateBy method of the Line class

 Let’s return now to the custom Set methods for the length and angle attributes.
As shown in Figure 11.31, the length attribute is set by first calling the built-in length
Set operation, then using the current values of the length and angle attributes to
calculate the new position of the Line’s end Coordinate. This is done by feeding the

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

187

length and angle values, as well as the start and end Coordinates to a universal
method called VectorsToPoints, which outputs the new end Coordinate value.

Figure 11.31: The overridden length Set method of the Line class

 The VectorToPoints universal method (see Figure 11.32) simply calls two local
methods to reset the end Coordinate’s x and y attributes. Each local method, depicted in
Figure 11.33, must convert the length and angle of the line back from polar (length-
angle) coordinates to Cartesian (x-y) coordinates. In doing so, the method resets the
endpoint x-y position. The mathematical formulae we use for these calculations require
angular inputs in radians. We can reuse a method we wrote earlier to help us -- the
DegreesToRadian method.

 In the SetEndX local method, we convert the angle attribute from degrees to
radians, then calculate its cosine. We multiply this cosine times the Line’s length
attribute to get the change in position along the x-axis from the line’s start to its end. We
add this to the x position of the line’s start to get the x position of the end Coordinate.

 In the SetEndY local method, we carry out precisely the same steps, using the sine
of the angle instead to get the change in position along the y-axis from the line’s start to
its end. We add this to the y position of the line’s start to get the y position of the end
Coordinate.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

188

Figure 11.32: The VectorToPoints universal method

Figure 11.33: The SetEndX and SetEndY local methods

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

189

 The custom Set method for the angle attribute is depicted in Figure 11.34. The
angle attribute is set with the built-in angle Set operation. Next, as we did in our length
Set method, the current values of length and angle are used to calculate the new position
of the Line’s end Coordinate via the VectorsToPoints universal method.

Figure 11.34: The custom angle Set method of the Line class

 This completes the Line class. Our Line can be placed anywhere, resized and
rotated. For all its simplicity, the Line class does a lot. And it can be reused in any
graphics program we choose to write that needs to represent (or draw) lines. The
Coordinate and Line classes could form the start of a device-independent object-oriented
drawing system. What does this mean? “Device independent” means that we define the
position of a graphics shape (such as our Line) in abstract terms, and not solely by the
pixels on our computer’s monitor. This is important because hardware such as a computer
monitor is always subject to change. If our shape classes have no direct dependence upon
the specifics of a particular monitor, we can use them for any monitor. Our Coordinate
and Line classes use only abstract x and y coordinates in space, not specific positions on
the monitor screen. An “object-oriented” drawing system uses graphics objects instead of
collections of pixels or dots on the screen. Again, our classes meet this definition. The
Line class is defined by its ends, length and orientation, not by each individual point
along the line. This model of drawing is the same as used by illustration programs. You
create a shape such as a line, then move it, rotate it, etc., since the line is stored as a
definition of a line, not as points falling on the line. What we’ve done is to write basic
utility classes for a drawing package -- a way to define the placement of a graphics object
(Coordinate class) and one drawing shape (Line class). These simple shape classes can
be built upon to create other shapes such as rectangles or irregularly-shaped polygons.
The Coordinate class can be included in a curve or circle as well.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

190

Exercise 11.2:

Create a Rectangle class that is defined by the position of its top-left corner and
bottom-right corner, as well as its height, width and orientation. Allow the Rectangle
to be resized, moved or rotated.

Summary

 Inheritance and composition are our main techniques for extending the usefulness
of our classes and to create new classes by reusing previously-written code. In this
chapter, we examined how to take advantage of these techniques with Prograph.

• Inheritance (subclassing) is directly supported in Prograph by creating a new
class, then making a datalink between the desired parent class and the
subclass. The attributes of the subclass are given a slightly different icon to
mark them as inherited attributes.

• Abstract superclasses are a special type of superclass that is never used to

create objects. Its sole purpose is for subclassing. Its child classes may be used
to create objects.

• Instance methods, discussed in the previous chapter, may also be used to

initialize attributes. In this chapter, we used them when creating objects from
the Array class to set the lengths of the class’ list attribute, then allocate
memory for the contents of the list.

• When a class method in the parent class does not perform the exact action we

wish a subclass to perform, we may override the parent class method with a
new method in the subclass. The overridden method may in turn call a
superclass method to reuse the code in the parent class’ method that we do
wish to use in the child class method.

• Composition is accomplished in Prograph by setting the value of an attribute

of one object to be an instance of another class. We make use of the embedded
object by calling its class methods.

