
Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

197

13. Applying OOP -- Creating Utility Classes

Overview

 In this chapter, we will put the principles of object-oriented programming into
practice. We will present several examples of object-oriented programming that may be
used as building blocks for your own programs. Keep in mind that these examples may
be far from complete -- they may not supply all of the functionality you might desire.
However, the inclusion of fully-defined examples would require many more pages to
display and explain than space permits. Our code is meant solely to serve illustrative
purposes and provide some basic building blocks for your programs. Just as we have
extended the range of available Prograph data types with our examples, we hope that you
will extend the usefulness of our code.

Complex Numbers

 As our first example of applied object-oriented programming, we will construct a
new data type that may be used in your future Prograph programs as if it were included as
a built-in data type of Prograph CPX. Our new data type will represent complex numbers,
a mathematical construct built upon the concept of imaginary numbers -- the square root
of -1. Although complex numbers have a theoretical background, they do have real-world
applications, such as in electronic design, signal analysis and image processing. They are
also fairly easy to implement, and therefore make a good initial example of creating
abstract data types that can form building blocks for other programs.

 Complex numbers have two components -- a “real” component (positive and
negative numbers, or what we commonly think of as numbers in daily life) and an
imaginary component. This is reflected in the two attributes of our Complex class, as
pictured in Figure 13.1. This new class will be saved in a section of the same name.

Figure 13.1: Real and imaginary component attributes of the Complex class

 Setting the attributes of the Complex class or getting their current values requires
writing our own class methods, since we would almost always want to work with both the
real and imaginary components at the same time. The two methods for accessing the real
and imaginary attributes are shown in Figures 13.2 and 13.3.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

198

Figure 13.2: Set method of the Complex class

Figure 13.3: Get method of the Complex class

 Mathematical operations on complex numbers take two flavors -- adding,
subtracting, multiplying or dividing complex numbers with other complex numbers, or
performing the same operations with real numbers alone (with no imaginary component).
Let’s take the second case first, since these operations are fairly simple.

 Adding a complex number to a real number involves adding the real number to
the complex number’s real component (see Figure 13.4). Subtracting a real number from
a complex number or multiplying or dividing complex numbers all follow the same logic,
so we won’t take up space showing you those methods.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

199

Figure 13.4: AddReal method of the Complex class

 Adding two complex numbers together or subtracting one complex number from
another are also fairly straightforward tasks. All that is required is adding or subtracting
the real and imaginary components of Complex, respectively. The Add class method of
the Complex class is shown in Figure 13.5. The Subtract method is the equivalent code
with subtraction of the real and imaginary components.

Figure 13.5: Add method of the Complex class

 Multiplying two complex numbers is just a little bit trickier. The real component
of the product Complex is computed by subtracting the product of the imaginary
components of the multipliers from the product of the real components of the multipliers.
To get the product Complex’s imaginary component, we add the product of the first
multiplier’s real component and the second multiplier’s imaginary part to the product of
the second multiplier’s real component and the first multiplier’s imaginary part. To put

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

200

this in equation form, Realproduct = (Real1*Real2) - (Imag1*Imag2), and Imagproduct =
(Real1*Imag2) + (Imag1*Real2). Figure 13.6 shows the code for the Multiply class
method.

Figure 13.6: Multiply method of the Complex class

 How do we divide two complex numbers? Division of complex numbers could be
very complicated, but we can use a trick to make it simple. All we do is take the inverse
of the divisor Complex, then multiply the dividend and inverted divisor complex
numbers together (see Figure 13.7).

Figure 13.7: Divide method of the Complex class

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

201

 Figure 13.8 shows the Invert class method of the Complex class. The inverse of a
complex number takes the form Realinverse = Realorig/(Realorig2 + Imagorig2) and
Imaginverse = -Imagorig/(Realorig2 + Imagorig2).

Figure 13.8: Inverse method of the Complex class

 The elegance of the Complex class is that it makes complicated concepts easier
to use. The details of the mathematics can be found in most math textbooks, and once
written into the class methods, never have to be thought about again. Using complex
numbers in a program becomes as easy as creating a Complex object, then sending
messages to it to add, subtract, multiply or divide. We have made manipulating complex
numbers in a Prograph program as easy as using integers or floating-point numbers.

 Let’s look at an example of the use of the Complex class. After saving the
Complex section, create a new project with a new section called Test Complex. Add the
Complex section to this project. In the Test Complex section, create a universal method
called Test Complex Class. Complete its code as shown in Figure 13.9. This method
creates two instances of the Complex class, sets their real and imaginary attributes, then
adds them. The values of these attributes are read from the summed complex number and
displayed. the output of the method is depicted in Figure 13.10.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

202

Figure 13.9: Test Complex Class universal method

Figure 13.10: Output of the Test Complex Class universal method

Fractions

 Another mathematical data type that may be encapsulated into a simple class is a
fraction. We will design a class called Fraction that will simplify complicated fractions,
add them together, subtract, multiply or divide them, or calculate their reciprocal.

 The class requires only two attributes. One is the integer numerator of the
Fraction and the other, also an integer, is its denominator (Figure 13.11).

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

203

Figure 13.11: Attributes of the Fraction Class

 Because the numerator and denominator attributes are integers, we should
confirm that the values we wish to place in them are integers. We therefore write our own
Set methods to automatically performs this test. The Set method for the numerator is
shown in Figure 13.12. The Set method for denominator is similar.

Figure 13.12: Custom Set method for the numerator attribute

 We also include a Display method, depicted in Figure 13.13, that puts the
Fraction into a form that may be displayed on a computer screen, saved in a file or
printed. It places into a string the numerator, followed by a “/” character, then the
denominator.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

204

Figure 13.17: Display method of the Fraction class

 The Reciprocal method calculates the reciprocal of a fraction by switching the
values of the numerator and denominator of a Fraction. Its code is shown in Figure
13.18.

Figure 13.13: Display method of the Fraction class

 All of the remaining methods of the Fraction class rely upon two utility class
methods that simplify or reduce the fraction’s value or allow mathematical operations on
two fractions by calculating their Lowest Common Denominator. Let’s look at the
Reduce class method first.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

205

 The Reduce method is shown in Figure 13.14. It determines the largest number
by which both the numerator and denominator are divisible via the reduce local method.
It then divides each by that number. This has the effect of simplifying a fraction. For
example, if the fraction is 3/12, the Reduce method will find that the largest number that
both the numerator and denominator are divisible by is 3, and will divide each by that
number. The fraction’s value is therefore set to 1/4, which is a simpler way of stating
3/12.

Figure 13.14: Reduce method of the Fraction class

 The reduce local method is a loop that repeatedly calls a Get GCD local method.
This local method (see Figure 13.15) checks if are both numerator and denominator are
integer-divisible by the loop counter (that is, integer division of each produces no
remainder) using a logical and operation.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

206

Figure 13.15: The reduce local method

Figure 13.16: The Get GCD local method

 The LCD method converts two Fractions so that they share a least common
denominator. This is accomplished in two steps (see Figure 13.17). First, the
denominators of each Fraction are multiplied together to form the new denominator of

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

207

each Fraction. Next, the numerator of one Fraction is multiplied by the denominator
of the other to form each Fraction’s new numerator.

Figure 13.17: LCD method of the Fraction class

 The GCD and LCD class methods form the common components of our
remaining Fraction class methods. Let’s start with the Equal? method, which determines
if two Fractions are equal in value (Figure 13.18). The two are first reduced to their
simplest form via the GCD method. Then the numerators and denominators are
compared. If both are equal, the two Fractions are equivalent.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

208

Figure 13.18: Equal? method of the Fraction class

 The Add class method, shown in Figure 13.19, converts two fractions to share a
common denominator by calling LCD, then adds their converted numerators together
to form the summed Fraction’s numerator. The Fraction is then reduced via the GCD
method.

Figure 13.19: Add method of the Fraction class

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

209

 The Subtract class method is almost identical to the Add class method. It
performs all of the same steps as Add except that it subtracts one numerator from the
other after converting them with LCD (Figure 13.20).

Figure 13.20: Subtract method of the Fraction class

 The Multiply class method calculates the product of two Fractions by first
multiplying their numerators to form a new numerator, then multiplying each
Fraction’s denominator to form a new denominator (see Figure 13.21).

Figure 13.21: Multiply method of the Fraction class

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

210

 The Divide class method (Figure 13.22) first converts the divisor Fraction to its
reciprocal, then multiplies this by the dividend Fraction.

Figure 13.22: Divide method of the Fraction class

 This completes the Fraction class. There is only one action that is missing from
our class -- the ability to convert between decimal floating-point numbers and Fractions.
We will leave the writing of these conversion methods as an exercise for the reader.

Stacks and Queues

 Let’s turn now to two classes that implement stacks and queues, two computer
theory constructs familiar to most computer programmers which may be used in a wide
variety of computer programs. In C++, object-oriented versions of stacks and queues are
typically built upon arrays. Prograph does not have a built-in array data type, but we
constructed one in the previous chapter. We could use the Array class to construct the
new Stack and Queue classes, but in this case, a simple list will suffice rather than an
Array. Building stacks and queues with lists simplifies our programming task
considerably.

 Starting with the Stack class, we see that its attributes consist of just a list to
represent the stack’s contents and an integer value to indicate which member of the list is
at the current top of the stack (see Figure 13.23). We can see now why a list
representation is preferable for the Stack class. Using a list will automatically provide us
with an unlimited stack size, while even a resizable array would require constant resizing
as the stack grew or shrank.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

211

Figure 13.23: Attributes of the Stack class

 Clearing a Stack involves emptying the contents of the stackList and resetting
topOfStack to 0 by calling the Clear method (see Figure 13.24).

Figure 13.24: Clear method of the Stack class

 As stated above, our stack can grow to any arbitrary size since the stackList is by
definition resizable. We can keep adding items to the stack indefinitely. But what about
removing items? When the stack is emptied, we’d like to check that we are not trying to
remove items from an already empty stack. The IsEmpty? method, shown in Figure
13.25, allows us to test for this condition.

Figure 13.25: IsEmpty? method of the Stack class

 Now let’s move to the main actions of stacks -- pushing and popping, putting
items onto and removing them from the stack. since the Stack class implements the stack
with a list, all we need to do to push an item onto the top of the stack is attach an item to
the end of the stackList and increment topOfStack by one. The Push method does both
(see Figure 13.26).

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

212

Figure 13.26: Push method of the Stack class

 Popping an item off the stack is accomplished by the Pop method (Figure 13.27).
This method first checks if the stack is already empty by calling the IsEmpty? method,
and displays an error message if so. If the stack is not empty, the item at the top of the
stack is removed in the opposite manner as it was pushed -- detaching the last element of
stackList and decrementing topOfStack by one.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

213

Figure 13.27: Pop method of the Stack class

 Let’s see how the Stack class performs. Our test stack method, depicted in Figure
13.28, pushes two integer numbers onto the stack. It then pops these values off the stack
and displays them. A third pop operation is also attempted.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

214

Figure 13.28: The test stack universal method

 Note that the values pushed onto the stack are popped in the opposite order. This
is the proper way that a stack should behave -- the last item in is the first item out
(commonly abbreviated as LIFO). When the third pop operation is attempted, an error
message is presented to the user that a pop was attempted on an empty stack. Figure
13.29 shows the output of the test stack universal method.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

215

Figure 13.29: Output of the test stack universal method

 The implementation of a queue is very similar to that of the Stack class. The sole
difference in their behavior is that whereas a stack is last in - first out, the queue is first in
- first out (or FIFO for short). The Queue class (Figure 13.30) only has one attribute, the
queueList, since we don’t need to maintain an index to the last item in the queue. It is
always the last item of the list that forms the queue.

Figure 13.30: Attributes of the Queue class

 The instance method, Clear method and IsEmpty? methods of Queue are
identical to those of the Stack class, so we won’t show them here. The Push and Pop
methods, on the other hand, differ. Push simply adds a new element to the end of the
queueList (see Figure 13.31).

Figure 13.31: Push method of the Queue class

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

216

 The Pop method, after checking that queueList is not empty, removes the
leftmost element of the queueList, the first element that had been pushed onto the queue
(see Figure 13.32).

Figure 13.32: Pop method of the Queue class

 The test queue method (Figure 13.33), which performs the same actions as the
Stack class’ test stack method, presents the popped numbers in the same order they were
originally pushed onto the queue (remember, queues are FIFO). Figure 13.34 shows the
output of the test queue method.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

217

Figure 13.33: The test queue universal method

Figure 13.34: Output of the test queue universal method

 Note that the Stack and Queue classes share much of their code. Shouldn’t we
have subclassed both from a common parent class containing a list attribute and the

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

218

instance, Clear, IsEmpty? and Push methods? Yes! Normally, we would. However, in
this case, the two classes are so small that this point is moot. For illustrative purposes, we
have kept the two classes separate.

Matrices

 Our final utility class is another mathematical construct -- the matrix. Why are we
discussing one more mathematical class? Matrices are arguably the most important and
widely-used mathematical construct in computer programming. They are used not only in
scientific programming, but also in image processing and two- and three-dimensional
graphics. Their widespread use makes it a perfect candidate as a reusable utility class.

 The Matrix class implements a special subset of matrices called square matrices --
matrices that have an equal number of rows and columns. Square matrices are the type of
matrix used most commonly in computer programming and are much simpler to construct
and manipulate. Rather than storing the square matrix directly as a nested two-
dimensional list, we will build our Matrix class upon a set of utility classes that are
related to the Array classes discussed in Chapter 11. The new classes are the 2-D Array,
or two-dimensional array, classes. These classes place a layer of abstraction between the
matrix and the nested list used to store it. This “nesting” of one class inside another
(composition) is also an example of one type of interclass communication. Objects
created from the Matrix class must “talk to” the 2-D Array objects embedded within
them to access their matrix contents. While this may seem at first to unnecessarily add an
extra level of indirection that could slow down matrix calculations, the use of the
intermediate 2-D Array classes greatly simplifies the programming of many matrix
calculations.

 The two-dimensional array classes are subclassed from a common 2-D Array
class. This class has three attributes shown in Figure 13.35. The arrayList holds the
elements of the two-dimensional array in a nested list. The size of the nested list is
defined by both the rows and columns attributes. Rows determines the number of
sublists within arrayList, and columns defines the length of each sublist.

Figure 13.35: Attributes of the 2-D Array class

 The GetElement and SetElement class methods are the most frequently called
methods. GetElement (see Figure 13.36) checks that the requested array element row
and column are within the bounds defined by the array’s rows and columns attributes,

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

219

then calls the get-nth primitive to read the appropriate item in the arrayList. The
SetElement method (not shown) performs all of the same actions except that it calls
set-nth! to replace the current value of the desired array element with a new value.

Figure 13.36: GetElement method of the 2-D Array class

 The Copy class method creates a duplicate of a 2-D Array object. Rather than
instantiate a new object, then use a loop to copy each element in turn, we use a short-cut
(see Figure 13.37). Prograph CPX includes a copy primitive that performs a so-called
“deep copy” of an object. In other words, it creates an exact byte-by-byte copy of an
object, including nested objects (see the composition technique, discussed in Chapters 9
and 12).

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

220

Figure 13.37: Copy method of the 2-D Array class

 Adding arrays does require using a loop to access each element in turn. In the
Add method (Figure 13.38), we first ensure that the array to be added to our original
array is of the same size, resizing it if needed. We then enter a nested loop to add together
each of their corresponding elements. The sums are stored in the original array.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

221

Figure 13.38: Add method of the 2-D Array class

 The Subtract method, not shown here, performs a subtraction of each
corresponding element of two arrays. Its code is nearly identical to that of the Add
method.

 The final method of the 2-D Array abstract base class is the Free method, which
empties the arrayList. Its code is depicted in Figure 13.39.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

222

Figure 13.39: Free method of the 2-D Array class

 It is actually the subclasses of the 2-D Array base class that we’ll use. As with the
Array, IntArray and RealArray classes constructed in Chapter 11, we’ll provide the 2-D
Array class with integer and real two-dimensional array subclasses. Since these two
subclasses are very similar, we’ll only show the class methods of the 2-D RealArray
class here. The attributes of 2-D RealArray are all inherited from its parent class.

 The instance method for this class first makes a list of real numbers to serve as a
sublist, then constructs a list that contains several of these sublists. In other words, an
inner list of real numbers is first constructed, then an outer list “wrapper” is built, made
up of these sublists (see Figure 13.40).

Figure 13.40: Instance method of the 2-D Array class

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

223

 The SetElement method (Figure 13.41) overrides the corresponding method of
its superclass so that type checking may be done on the new array element value. It calls
the parent class’ method to perform most of its actions.

Figure 13.41: SetElement method of the 2-D Array class

 The only other method that must be implemented in the subclasses of 2-D Array
is the Resize class method (see Figure 13.42), which gives the array its dynamic
properties, allowing the array to grow or shrink in size. This method, in turn, calls two
additional methods -- ResizeColumns and ResizeRows.

Figure 13.42: Resize method of the 2-D Array class

 ResizeColumns class method is composed of a loop that is entered once for each
row of the array, as shown in Figure 13.43. The loop calls the do the resize local method.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

224

Figure 13.43: ResizeColumns method of the 2-D Array class

 The do the resize local method (Figure 13.44) checks if the requested column size
is larger, smaller or equal to that of the current column size. If it is larger, additional
elements are joined onto the end of each sublist. If it is smaller, elements are chopped off
of each sublist. If it is equal, nothing is done.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

225

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

226

Figure 13.44: do the resize local method

 ResizeRows (Figure 13.45), like ResizeColumns, checks if the requested row
size is larger, smaller or equal to that of the current row size. In this method, if the
requested number of rows is larger than the current rows, additional sublists are created
ands added to the arrayList. If it is smaller, sublists are deleted from arrayList. If it is
equal, nothing is done.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

227

Figure 13.45: ResizeRows method of the 2-D Array class

 We’ll take advantage of the two-dimensional array classes to build the Matrix
class. The major attribute of the class, matrixList (see Figure 13.46), will contain a two-
dimensional array object. The rows and columns attribute determines the size of the
matrix. Remember that in a square matrix, the number of rows equals the number of
columns, so we only need one attribute to hold both values.

 The arrayType attribute is extremely important. It will determine which type of
array we’ll use to hold the matrix contents -- a 2-D IntArray or a 2-D RealArray. In this
way, we can mimic one recent addition to the C++ language -- parameterized types or
class templates. These C++ classes are typically “container”-type classes that hold other
data types. Templates allow these classes to hold any type of data. The exact data type is
“filled in” at compile time.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

228

 In Prograph, we can perform a similar function by instantiating the Matrix
container class with either an integer or real matrixList. Type checking will then be done
on any new matrix element values via class methods.

Figure 13.46: Attributes of the Matrix class

 How does this template-like behavior originate? To answer this, we must look at
the instance method for the Matrix class, shown in Figure 13.47. This method reads in a
newly-created but as yet uninitialized instance of a Matrix. It creates a 2-D Array-derived
object based upon the value of arrayType; that is, if an integer matrix is needed, an 2-D
IntArray is created for the matrixList. Otherwise, a 2-D RealArray is created as the
matrixList.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

229

Figure 13.47: Instance method of the Matrix class

 The corresponding Free method (Figure 13.48) acts much like a C++ destructor
for this class. It deallocates the storage for the matrixList by replacing its contents with
an empty list.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

230

Figure 13.48: Attributes of the Square Matrix class

 The GetElement, SetElement and Copy class methods are not shown here
because they are similar to their counterparts in the 2-D Array classes. The Copy method
simply calls the copy primitive to duplicate the matrix. The element access methods
check that the requested element’s row and column do not exceed the matrix bounds,
then call the GetElement or SetElement method of the matrixList’s 2-D Array object
to actually get or set the value of the matrix element. However, before setting the
element, the SetElement method calls two additional class methods that provide
typecasting for the new element value.

 Check Element Type (see Figure 13.49) determines if the new element’s data
type matches that of the matrixList. It returns a Boolean value that signals whether or not
typecasting must be done. If the data type is one for which no corresponding two-
dimensional array type exists, an error message is displayed and the output Boolean set to
TRUE so that typecasting is not attempted on the inappropriate data type.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

231

Figure 13.49: Check Element Type method of the Square Matrix class

 The TypeCast method, shown in Figure 13.50, checks if the new element’s data
type needs to be typecast. If so, it is then converted to the proper data type; otherwise, it
is passed through unchanged.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

232

Figure 13.50: Check Element Type method of the Square Matrix class

 The last general action of the Matrix class is to determine if two matrices are of
the same dimensions. This is accomplished by the EqualSize? method (Figure 13.51),
which simply compares the rows and columns attributes of two Matrix objects for
equality.

Figure 13.51: EqualSize? method of the Square Matrix class

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

233

 Now let’s get to the mathematical operations on matrices. The Add and Subtract
methods are nearly identical, so we’ll just show the Add method’s code in Figure 13.52.
This method gets the matrixList of each input matrix, then calls the Add method for the
matrixList’s 2-D Array object. Wasn’t that simple? This is why we built the 2-D Array
class in the first place -- to greatly simplify the task of coding the Matrix class’ methods.
The matrix Subtract method performs the same actions, calling the 2-D Array/Subtract
method instead. We’ll discuss a Multiply method shortly.

Figure 13.52: Add method of the Square Matrix class

 Adding, subtracting or multiplying a matrix by a numerical scalar (non-matrix
number) also share a common logical flow. The Add Scalar method, shown in Figure
13.53, enters a loop in which the scalar is added directly to each element of the matrix.
The Subtract Scalar and Multiply Scalar methods are nearly identical.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

234

Figure 13.53: Add Scalar method of the Square Matrix class

 Let’s return to the Multiply method (see Figure 13.54). Here, we input the two
matrices to be multiplied, then make a copy of one matrix to hold the product of the
multiplication. A loop is then entered that calls the Element Product method once for
each element of the matrices.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

235

Figure 13.54: Multiply method of the Square Matrix class

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

236

 The Element Product method (Figure 13.55) receives the row and column of the
element to be multiplied, then sums together the products of each element in that row of
the first matrix and each element in that column of the second matrix. This complicated
sum is the product for that single matrix element.

Figure 13.55: Element Product method of the Square Matrix class

 This concludes the code for the Matrix class. The examples in this chapter should
get you started in writing your own reusable classes. When applied carefully, OOP can
supply you with a collection of classes that can be combined into new programs to
considerably shorten your programming time.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

237

Summary

 In this chapter, we have constructed a number of useful classes that may be added
to your Prograph programs. In the process, we have provided practical examples of many
of the principles introduced in the previous chapters on object-oriented programming.

• Prograph classes may be used to build new data types such as the Complex,
Fraction and Matrix classes that may then be called upon with little effort as
if they were built-in data types.

• Many language features missing from Prograph but present in other

programming languages like C++ may be mimicked. An example of this is the
implementation of class template-like function in the Matrix class.

 In Chapter 9, we suggested object-oriented programs could be thought of as
systems of intercommunicating classes. While we could provide a simple example of
how such a system might work, instead we’ll show you an existing set of cooperating
classes -- the Prograph CPX Application Builder Classes. These classes provide
Prograph programs with a consistent user interface by sending method calls from one
user interface object to another.

