
Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

38

3. Prograph Methods

Overview

 In this chapter, we’ll progress from simple programs to larger, more complex
programs using the program elements described in the previous chapter. This chapter and
those that follow it in this section of the book will focus upon structured procedural
programming -- breaking down a large programming task into a series of more and more
focused methods to be executed in turn. This approach is required as background to the
discussion of object-oriented programming (OOP) in subsequent chapters, since even a
well-organized object-oriented program must contain some procedural code within it. As
we progress through these two sections of the book, we’ll take advantage of Prograph’s
input-output primitives (such as ask and show) to get information in and out of a
program rather than creating a standard user interface. After we’ve discussed OOP, we’ll
examine the use of OOP in building sophisticated user interfaces for our programs.

Methods and Operations

 To get you comfortable creating programs with the Prograph CPX environment,
let’s build a program containing a single universal method that tackles a simple
trigonometric problem. Given the length of one leg of a right triangle and the angle of
one corner of the triangle, we’ll calculate the length of the other leg using the tangent of
the angle. The tangent of an angle is defined as the length of the opposite leg of the
triangle divided by the length of the adjacent leg of the triangle (tan Ø = x/y, where Ø is
the angle, x is the length of the opposite leg and y is the adjacent leg). Therefore, by
rearranging this equation, we can calculate the length of the adjacent leg of the triangle
by the equation y = x • tan Ø.

Figure 3.1: Calculating the length of the adjacent side of a triangle with the
tangent of the base angle

 Begin by creating a new program called Triangle Geometry Project with one
section called Triangle Geometry. Next, create a universal method called Adjacent Side
in that section, and comment it appropriately (see Figure 3.2). The Prograph editor lets
you comment almost any icon or operator in a program, which encourages you to
document your programs well with a minimum of effort. With these comments and
Prograph’s easy to read dataflow diagrams, it should be simple enough for you to
understand what your code’s doing, even if you’re examining it many months later. This

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

39

is much different from other languages, such as C++, where commenting is a tedious and
active process -- unless you comment profusely, you may never remember what the code
means.

Figure 3.2: The Adjacent Side universal method

 Open the Adjacent Side method’s window (that is, its first “case window”) and
complete its code diagram as shown in Figure 3.3. Also shown in Figure 3.3 is the
equivalent source code in the C++ programming language. Here you can see just how
easy it is to understand Prograph code, and just how carefully you have to examine
textual code than carries out the same actions. Figure 3.3 also demonstrates how much
more natural dataflow programming is than the control flow style of textual languages.
Reading the C++ code, we first have to declare the names and storage types of all the
variables. Then we must figure out what all the stream input-output code is doing. Next
the triangle base angle is multiplied times pi and divided by 180, then reassigned to itself.
The tangent of this value is calculated, then multiplied by the opposite side’s length.
Throughout this code, we must remember what each variable is holding -- their names
and types are critical to both our understanding of the code and its correct compilation
and execution.

 In Prograph, it’s easy to see that the base angle is multiplied by pi, then divided
by 180. The tangent of this result is calculated and multiplied by the length of the
opposite side. Throughout this code, we never have to declare or name any variables --
Prograph keeps track of all of this for us.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

40

#include <streams.hp>

const double PI = 3.1415927;

void
AdjacentSide(void)
{
 double oppSide, adjSide, angle;

 cout << “Enter opposite side:”;
 cin >> oppSide;
 cout << “Enter angle:”;
 cin >> angle;

 angle = angle * PI / 180.0;
 adjSide = tan(angle) * oppSide;

 cout << “The adjacent side is ” << adjSide <<
“\n”;
}

Figure 3.3: The Adjacent Side method case window and its equivalent in

the C++ language

 Now we’ll combine the operations on the right side of the window into a local
method named Degrees To Radians. This local method will now handle the conversion of
the angle from units of degrees to units of radians. A radian is 0.01745329252 degrees

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

41

(the value π [pi] divided by 180), since a circle is divided into either 180 degrees or
π radians.

 In Figure 3.4, it’s now even easier to understand the purpose of the code with the
local method in place. The set of operations now in the local had one purpose -- to
convert the angle’s units of measurement from degrees to radians. By calling the local
“Degrees To Radians,” it’s made obvious what that code is for. Using locals provides one
more way to document the purpose of our code.

Figure 3.4: The Adjacent Side method case window with a local method

 The contents of the local method are still there. You can view them by opening
the Degrees To Radians case window (see Figure 3.5). What’s especially convenient
about local methods is that they incur no execution overhead; that is, the code runs just as
fast as it would were the local not defined.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

42

Figure 3.5: The Adjacent Side method case window

 Remember that in dataflow programming, the order of execution of operators is
determined not by their position in the code window, but by when all of the input data is
made available to a given operator for it to work on. When the Adjacent Side method
starts, Prograph has the choice of executing either of the two ask primitives at the top of
the code diagram. Which one is executed first doesn’t matter to the Prograph interpreter.
But in this case, the order of execution does matter to us. We want to execute the ask
operators in a particular order. We can force the interpreter to execute the leftmost ask
first by means of a
synchro link, as shown in Figure 3.6. Synchros are a means for you to force code to
execute in a control-flow manner as in other languages like C -- the operations on each
side of the synchro must execute in the order you define; that is, the order of execution is
no longer data-driven. The operations linked by a synchro execute in the order depicted
by the direction in which the semicircles that make up the synchro “point.” In Figure 3.6,
for example, the semicircles of the synchro “point” from the left to the right, so the ask
primitive on the left will executes before the ask on the right.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

43

Figure 3.6: Forcing the order of execution with a synchro link

 The program now must first ask for the length of the opposite leg of the right
triangle. This value is fed to the first root node of the division ÷ primitive but this
primitive cannot execute until it also receives the input data on its second root node. This
input is the product of the code on the right side of the window, which starts with the
right ask primitive at the top of the code diagram. The next step of execution is therefore
that we are asked to enter the angle at the corner of the triangle.

 Following this, we will calculate the tangent of this angle and multiply it by the
length of the opposite leg to get our answer -- the length of the adjacent leg of the
triangle. Computers, like hand-held calculators, have built-in trigonometric routines.
Unfortunately, while most people think of angles in terms of degrees, these computer
routines expect angles in units called radians. The tangent primitive (tan) is no
exception. We must convert the angle from degrees to radians if the tan primitive is to
give us the output we desire. The local method Degrees To Radians was created to
contain the code to do this. All this local method does is multiply the angle in degrees by
π or pi (obtained from the pi primitive) and divide it by 180, yielding the angle in

radians (radians =
degrees ! "

180
). (Note: converting from radians to degrees is

accomplished by the opposite steps -- multiplying by pi and dividing by 180.)

 After the conversion from degrees to radians is finished, the rest of the code will
function properly, and our answer will be correct. To see for yourself, execute the
Adjacent Side method by highlighting its icon, then selecting the Execute Method menu
item in the Exec menu.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

44

By The Way...

You will use methods to convert from degrees to radians, and
vice-versa, fairly often. You may wish to create universal
methods to do these conversions and save them as a single
section called “Angle Conversions”. You can then reuse these
methods over and over again. Remember, the more you can reuse
code, the less time you’ll spend programming later. You can
convert a local method into a true universal method by
highlighting the local method’s icon, then selecting the Local To
Method item in the Opers Menu.

Exercise 3.1

Create a program called Calculate Angle to ask for the length of two sides of a triangle
and the angle enclosed between them. Compute the length of the third side of the
triangle with the Law of Cosines:

a = b
2
+ c

2
! 2bc cosA()

where b and c are the sides of the triangle and A is the enclosed angle. Use the sqrt
primitive to find the square root.

Structured Programming of Bigger Programs with Many Methods

 If a program is to do any meaningful tasks, it must include a number of methods.
This is where the beauty of Prograph comes through! Prograph encourages structured
procedural programming -- the planning and construction of a program in a top-down
manner, breaking apart a huge complicated task into smaller, well-defined, manageable
tasks, then breaking down those tasks even further, and so on. In structured
programming, writing a program starts by first determining the major tasks you want the
program to accomplish (the “top” or more general level of the program), then fleshing
out the details of each of the minor steps that allow the big steps to get done (filling in the
“bottom” or more specific levels of the program). Each task is broken down into as small
and as specific a sub-task as it can be, and so on. The Prograph interpreter can help you
plan your programs in this fashion by letting you start programming the top-level general
aspects of the program, then automatically creating the bottom-level methods for you.

 Let’s look at a concrete example. Our next program will display instructions to
the user, then ask for two numbers, divide them, print the results, and sign off with a
farewell message. Create a new project called Divide Two Numbers Project, with a
section and universal method each having the name Divide Two Numbers, then open the
universal method’s case window.

 We’ll start building the program by defining the general broad steps the program
should take. At this point we will disregard the details of how to accomplish these steps.
Create three operations, one above the other, named Give Instructions, Process Data and

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

45

Farewell Message. Connect the operation icons with synchro links to ensure their order of
execution. Your Divide Two Numbers case window should look like Figure 3.7.

void GiveInstructions(void);
void ProcessData(void);
void FarewellMessage(void);

void
DivideTwoNumbers(void)
{
 GiveInstructions();
 ProcessData();
 FarewellMessage();
}

Figure 3.7: The top-level Divide Two Numbers method and its C++

language equivalent

 Notice in Figure 3.7 that in Prograph you don’t have to declare your methods
before calling them as in the C++ code also shown. Declaring methods is a necessity in
languages in which you must explicitly state the type of inputs and outputs a method will
have. In Prograph, all of this is handled automatically for you -- just one more example of
how Prograph simplifies programming by minimizing tedious and error-prone
“housekeeping” chores. In a large program, this can save a lot of time and effort.

 It’s important to note that we haven’t actually created the methods called Give
Instructions, Process Data or Farewell Message yet. We’ve just told Prograph that we will
be calling methods with these names in our program. That is, we’ve planned out the
general steps of our program, but haven’t yet written the specific code to accomplish
these steps.

 Now that we have the top level of our program and its general flow of
instructions, we’ll let the Prograph interpreter help us fill in its details. Close this case
window, then select the Divide Two Numbers method icon in the sections window, and

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

46

execute the method. What will happen now? How will the Divide Two Numbers method
execute when the three methods it should call do not exist yet?

 After it starts executing, the interpreter tries to call the first method to be called by
Divide Two Numbers -- the Give Instructions method -- but can’t find it since it doesn’t
exist. It displays an alert message to tell you so (see Figure 3.8). But there’s one
important part of the alert that’s easy to miss. The alert gives us the option of creating
this missing method.

Figure 3.8: Method Does Not Exist alert

 If we click on the OK button of the alert, the Prograph interpreter will create the
Give Instructions method. A dialog box, shown in Figure 3.9, will pop up to ask us in
which section to place this new method. At this point, our program only has one section
(also called Divide Two Numbers), so let’s select that one.

Figure 3.9: Dialog for selection of section in which to place new method

 A new case window (Figure 3.10) opens with the name of the newly created
method -- Give Instructions -- in its title bar. The stippled background of the window tells
us that this method is now being executed. We’ve actually created a new method while
the program is executing! The created method is given the proper number of inputs and
outputs (in this case, none).

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

47

Figure 3.10: Creation of new method during runtime

 To continue execution of the program, select Resume “Divide Two Numbers” in
the Exec menu. As the program continues to execute, alerts, dialogs and case windows
similar to those of Figures 3.8 to 3.10 will be presented for each of the two other as yet
undefined universal methods, Process Data and Farewell Message. Continue to execute
the program until these methods have also been created. If you now open the Universal
Methods window for this section, you’ll find in addition to the Divide Two Numbers
method the three new methods that we’ve created by running the skeleton of our
program.

 We’ve started the construction of our program automatically. All we did is create
the top-most level of our program -- the Divide Two Numbers method. Then we defined
the most general steps the program would take -- presenting instructions, processing
some data, then presenting a farewell message -- and gave descriptive names to these
steps. By attempting to run the program, the interpreter filled in the missing methods,
providing the next lower level of the program. We can now write code for the newly-
created methods or just leave them empty for now until we’re ready to define their code.
This ability to call methods that don’t yet exist and create them “on the fly” allows us to
plan and test the program as we write it, a process called prototyping. Writing and testing
a program as you go gives you immediate feedback about whether the program design
really matches what you intended to do, before you progress to the point where changes
become painful to accomplish. Prototyping with Prograph encourages you to experiment
with your code and try out different ways of carrying out each program step. So long as
the different versions of the method you’re experimenting with maintain the same
number of inputs and outputs, they can be interchanged without “breaking” the rest of the
program.

 Let’s continue to refine our program by proceeding to its more specific code. In
other words, we’ll start to define exactly how each of the major steps of the program will
be accomplished by breaking them down into the individual actions needed to do perform

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

48

each major task. Start with the simple Give Instructions method. Create the code diagram
shown in Figure 3.11 which will perform the actual procedures to display instructions to
the user. In this case, the steps required are so brief that they can be accomplished
entirely within this method alone. The Change Value dialog is also shown in the figure
for the text constant fed into the show primitive so that the entire instruction set can be
viewed in its untruncated form.

Figure 3.11: The Give Instructions method and its text message

 Repeat this process with the Farewell Message method. Its case window should
wind up looking like Figure 3.12.

Figure 3.12: The Farewell Message method

 Let’s progress to the middle method, Process Data. Our goal for this step of the
program is to get two numbers, divide them, and display the answer. We can therefore

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

49

continue to “subdivide” this step into the three actions we wish to accomplish -- enter two
integer numbers, divide them, and display the results of the division. These substeps
define the next, more specific level of our top-down program design. We’ll name three
methods to be placed within the Process Data method -- Get Integers, Divide Integers and
Display Answer. Fill in the case window as shown in Figure 3.13. This provides Process
Data with the names of the three methods it will call.

Figure 3.13: The steps taken by the Process Data method

 We now write the code to perform the actions at this next level of the program.
This time, rather than have the interpreter create the three methods to be called by
Process Data for us, let’s create them ourselves. Open the Get Integers method’s case
window and create the code diagram shown in Figure 3.14 for this new method.

Figure 3.14: The Get Integers method

 Notice that we feed the two numbers entered into output nodes on the output bar
of the method. These numbers will become the outputs of the Get Integers method -- the
number to be divided (dividend) and the number by which to divide it (divisor). Close the
Get Integers window. The Get Integers method root nodes, along with their associated
comments, are shown in Figure 3.15.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

50

Figure 3.15: Nodes and comments of the Get Integers method

 Continue by creating the code diagram for the Divide Integers method (Figure
3.16). The ÷÷ primitive performs an integer division, producing two outputs -- the
quotient of the two numbers and the remainder.

Figure 3.16: The Divide Integers method

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

51

By The Way...

Every Prograph primitive and user-defined method has a specific
“arity”. The arity is the number of input and output nodes. If
you try to access the method with the wrong number of inputs or
outputs, you’ll get an arity error message when you attempt to
run your program. Always double-check that you’re calling
methods using the correct number of inputs defined for that
method. How can you do this? Prograph provides on-line help
even for methods we write. Every time you write a method, it’s
added not only to Prograph’s table of available methods, but also
to the Info... window’s list of methods. We’ll show you how this
works in the next section. Once the information is in the help
system, you can use the Info... window to look up your method’s
purpose, inputs and outputs.

 All that remains to do is create the Display Answer method, whose code diagram
is shown in Figure 3.17. You might notice that the show primitive icon in the figure is
wider than usual. The icon is widened by dragging its terminal nodes laterally. The
farther apart you move the nodes, the wider the icon becomes. This makes the icon wide
enough to neatly display all of the extra nodes we’ve added to it.

Figure 3.17: The Display Answer method

 Finally, return to the Process Data case window and connect the root and terminal
nodes of the method icons so that the data required by each method will flow between
them (see completed Process Data method in Figure 3.18).

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

52

Figure 3.18: The completed Process Data method

 We’ve now designed a more complex Prograph program using structured
procedural programming’s philosophy of top-down design. We started at the highest
level of the program -- the general tasks that the program had to do. We then defined
those general tasks in three methods -- Give Instructions, Process Data and Farewell
Message. Next, we progressed to the next lower levels -- how these methods’ tasks are
accomplished. For the Process Data method, we broke down the problem of processing
the data into three smaller tasks, defined in three additional methods -- Get Integers,
Divide Integers and Display Answer. The overall design for writing the program is
pictured in Figure 3.19. The program is decomposed into three general methods, and one
of these -- Process Data -- is further broken down into three more specific methods.

Display
Answer

Divide Integers

Process
Data

Give
Instructions

Farewell
Message

Program

Get Integers

Figure 3.19: Organization of the Divide Two Numbers program

 The top-down design helps us define the nature of the problem we want to solve
and break a large problem down into smaller, more manageable tasks. It also lets us build
a program with code that will be easier for us to understand at a later date.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

53

Exercise 3.2:
Create a Gasoline Costs project. Write a small program that will start by providing
instructions to the user, and end by presenting a Thank You message to the user. The
main task will be to calculate the gasoline consumption of a car (in miles per gallon)
and the fuel cost for each mile traveled. The user should be asked to enter the starting
mileage, ending mileage, number of gallons of gasoline purchased and cost of the
gasoline per gallon. Use proper procedural programming style.

Setting Detailed Help Information for Your Methods

 We’ve written several methods in Divide Two Numbers. While we can easily add
comments to each method to describe its purpose, wouldn’t it be great if we could get the
Info… on-line help system to display information about our methods as well?

 Bring up the Info… window and display the information about the Get Integers
universal method that we just wrote. All that appears in the help window is the name of
the method. This is not very useful. What we’d like to see as well is what input data the
method expects, what output data it produces, the data type of each input and output and
what the method does. We need to add this information to the help display.

 Open a new text-editing window by selecting the New Text item in the File
Menu. Don’t worry about giving the text window a name when you’re prompted for one,
since we’ll discard this window when we’re finished with it. Type the information shown
in Figure 3.20 into the window.

 Inputs: none
 Outputs: integer; integer

 Prompts user for two integer values.

Figure 3.20: Comments to be added to the Get Integers method

 Highlight all of this text, then copy it. You may now discard the text window.
Now find the Get Integers icon in the Universal window and proceed to add a comment
to it. When the comment prompt appears, paste the text you copied from the text window
into the new comment.

By The Way...

You could have typed all this directly into the comment of the
method, but when you are typing in a lengthy comment, it can be
easier to use text windows as we just did instead.

 Comments for methods can be displayed in the Info… window. Bring up the
Info… window again. When you select the Universal Methods item, you’ll see a list of

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

54

the universal methods that you created for the current program. When you request
information about the Get Integers universal method, the dialog will now display the
name of the method, as well as the comments you typed -- the method’s inputs and
outputs, and what it does.

Figure 3.21: Universal methods in the Divide Two Numbers program

Figure 3.22: Information about the Get Integers method

 We suggest that you get into the habit of adding similar comments to all of the
methods you write so that they present similar information as Prograph primitives,
external methods and classes in the Prograph help facility.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

55

Summary

• Methods are the building blocks of a Prograph program -- independent
modules of dataflow code that can be reused and called throughout the
program. Unlike other programming languages, Prograph allows you to
execute independent methods instead of an entire program, making debugging
portions of a program much easier.

• Local methods are a way to bundle functionally-related portions of code into a

“bundle” that can be accessed only within one method. Their chief purpose is
for making code more understandable, but they are also useful for logical
tests, as we’ll see in code examples throughout this book. Local methods incur
no run-time overhead, so feel free to use them often.

• The ability of the Prograph interpreter to run incomplete code encourages

prototyping of structured code and experimentation.

• Just by writing comments for a method that you’ve written, information about

the method is automatically added to Prograph’s on-line help facility.

