
Quick Start
Revision 1.0
Dec. 29, 2005

2

Andescotia and the Marten logo are trademarks of Andescotia LLC.

Marten is a trademark of Andescotia LLC, registered in the U.S.

Codewarrior is a trademark of Metrowerks Corporation, registered in the U.S.
and other countries.

Xcode and MacOS are trademarks of Apple Computer, Inc., registered in the
U.S. and other countries.

© Copyright 2005. Andescotia LLC. ALL RIGHTS RESERVED.

It should be understood that Andescotia LLC reserves the right to make changes
at any time, without further notice, to the Marten Integrated Development
Environment (IDE) suite of software, documentation, example code, and related
materials in order to improve them. This document is a member of that suite of
products.

In addition, Andescotia LLC does not assume any liability arising from the
application or use of any product in the Marten IDE product suite.

The products of the Marten IDE suite are not authorized for use in any capacity
to develop software applications where the failure, malfunction, or any
inaccuracy of the developed application carries a risk of death, bodily injury, or
damage to tangible property. Examples of (but not limited to) such proscribed
uses are control systems, medical devices, nuclear facilities, banking and other
financial software, and emergency systems.

Documentation that is supplied in electronic form may be printed for use by the
purchaser under their rights to "fair use". Except for "fair use" purposes, no
portion of this document or any of the Marten IDE product suite may be
reproduced or transmitted in any form or by any means, including electronic or
mechanical, without prior written permission from Andescotia LLC.

ALL SOFTWARE, DOCUMENTATION, AND RELATED MATERIALS OF
THE MARTEN IDE PRODUCT SUITE ARE SUBJECT TO THE MARTEN
IDE ANDESCOTIA END USER LICENSE AGREEMENT.

Andescotia LLC Contact Information

Office: Andescotia LLC

524 Fieldstone Dr.
Bozeman, MT 59715

Website: www.andescotia.com

Technical Support: techsupport@andescotia.com

http://www.andescotia.com
mailto:techsupport@andescotia.com

3

Contents

Contents .. 3

Chapter 1: Introduction ... 5
About the quick start ... 5
About the application .. 5

Chapter 2: Some Marten basics... 7
Starting Marten ... 7
Project, library, and section basics ... 8

Adding libraries to your project ... 9
Adding a section to your project ... 10

Working with universal methods ..11
What goes on in methods .. 13
What are operations? ... 13
What is a datalink? ... 14

Chapter 3: Using debugging and testing features .. 19
Executing your method ... 19
Adding error processing to your method .. 20

Forcing an error .. 20
About cases ... 23

Controlling sequence of execution ... 26
Looking at a debugging tool ... 27

Chapter 4: Starting your speech application .. 29
What are external procedures .. 29
Finalizing your method ... 30

Chapter 5: Loading a framework .. 33
Loading the Small App Framework .. 33
Working with the sections added to our project .. 34
About classes ... 36

Chapter 6: Building the user interface .. 39
Key properties of your application .. 39

Creating an application instance .. 40
Editors for working with class properties .. 41

Specifying a MAIN method ... 54
Key universal method updates ... 56

4

Modifying your Speak-Text method ... 56
Modifying the Execute Say It! MAIN method .. 58

Running your application .. 58
Modifying code on the fly .. 59
Generating a standalone application .. 61

Chapter 7: Summary .. 63
Base documentation set ... 63
Sample code ... 63
Other sources of information .. 64

Index.. 65

1

1Introduction
� About the quick start
� About the application

Marten is a visual programming language designed to take advantage of principles of
dataflow and object-oriented programming (OOP). Its integrated, proprietary
development environment, access to OS X libraries, and thorough application
framework also make it a rapid application development tool.

About the quick start

This tutorial introduces Marten and attempts to anticipate any questions you may have
as you work through it. It takes a hands on approach; it teaches you many of the major
language elements and Editor/Interpreter features by having you work through an
application.

This tutorial is intended as the first step in the Marten learning curve. While
experienced Macintosh programmers may use the provided examples to get started
with Marten, using this tutorial is the prescribed method for most users. Once you have
completed the exercises in this book, you will be ready to move on to the other titles in
the Marten documentation set.

About the application

This tour walks you through the process of developing an application using Marten.
After some preliminary exercises aimed at giving you the fundamentals, you will build
a complete application. The final application will have your computer “speak” a text
string typed by a user. The user interface will be kept simple, consisting of a File menu
and a single window:

Introduction 6
Users will be able to type text into the text box and when they press the Say It! button,
the computer will “say” whatever they typed. While the process is pretty quick and
painless, it touches on many aspects of the Marten development environment. This
includes the following tasks:

� Creating some Marten source code using the Marten Editor
� Using with the integrated debugging features
� Using the application framework to create a user interface for the application
� Exploring how Marten can make use of code written in C.

2

2Some Marten basics
� Starting Marten

� Project, library, and section basics
� Working with universal methods

Before you start your speech application, you’ll spend time learning some Marten
fundamentals. In your first exercise, you will get an understanding of the most
commonly used Marten language elements and learn the basics of Marten source code
storage and organization.

Starting Marten

Marten provides a complete development environment that integrates all aspects of the
development cycle: planning, writing code, testing, and debugging.

� Locate the Marten application icon inside the Marten IDE folder.

� Double-click the icon.

The Marten development environment starts and an empty Project window opens.

Some Marten basics 8
Project, library, and section basics

The Projects window shows currently active projects. A project provides access to the
highest level elements of a Marten application. Your first task is to create a new project
and new application. Marten is different from other software development
environments in that you create your application first, even before defining a project.

� Command-click in any unoccupied space in the Projects window and choose New
Project from the contextual menu.

A Save dialog prompts you for a name for your application.

� Use the Save dialog to give your application the name Say It.app and create a new
folder called Tutorial Project to store your application and source code.

The Projects window now shows a project entry waitng to be named.

While you’ve already given a name to your final application, the project that organizes
your application’s source code is named independently.

� Type Say It Project.vpx and press RETURN.

The project entry icons in a Projects window represent the project elements that can be
accessed from the Projects window:

Resources are generally icons and images and are used in Marten applications in the
same way that they are used in other Macintosh development environments such as
Xcode and Codewarrior. Libraries provide extensions to the language and as such
allow access to low level building blocks such as the Carbon API, APIs to third party
products, and programming interfaces to custom-written code. Sections store units of
Marten source code.

Some Marten basics 9
Adding libraries to your project
Next you can add some libraries to your project. In languages such as C, operators such
as +, &&, and << are available by default. They are part of the definition of the
language. Marten, on the other hand, has very few built-in operators. Instead,
additional operators (called “primitives”) and other extensions to the language are
added to a project as needed. These extensions are stored in libraries.

For the preliminary exercise, you will need some common programming functionality
like comparison operators and math functions, as well as access to some basic
Macintosh functionality such as input/output operations.

� In the Projects window, click on the Say It Project to select it.

� From the File menu, choose Add to Project.

A Choose Object navigator opens.

� Navigate to the Frameworks subfolder of the Marten folder and add
MartenMacOSCarbon.framework, MartenStandard.framework, and
MartenUIAqua.framework.

� Click Choose.

The Libraries icon in the Projects window takes on a different, "filled in" appearance
to indicate that libraries are now present in the project.

� Double-click on the libraries icon.

A Primitives of SayIt Project window opens.

Some Marten basics 10
This window shows you the collections of primitives you just added. You’ll learn more
about primitives shortly. For now, while you could drill down deeper to view lower
level components, your project is complete with regard to libraries.

� Click the close box in the Primitives of Say It Project window.

Adding a section to your project
Next, you need to create a Marten section. A section is a file on disk, used to store a
"unit" of Marten source code. Sections are typically used to group functionally-related
code, a set of classes that implements a radio button, for example. In addition to being
a useful organizational tool, sections allow you to reuse code components in multiple
projects.

� Double-click the sections icon in the Projects window.

An empty Sections of Say It Project window opens.

� COMMAND-click in any unoccupied space in the Sections window.

A new section is created, ready to be named.

Some Marten basics 11
� Type Say It Section and press RETURN.

Now you’ve named your section but you haven’t saved it. Like a project, a section is
a disk file that must be saved.

� With your new section selected, from the File menu, choose Save.

A Save dialog opens.

� Name your section Say It Section.vpl and save it in the same location where you
stored your project.

With some of the bookkeeping out of the way, you’re ready to start on some Marten
programming. In the Sections window, each section entry has three associated icons:

Each icon represents a type of Marten element that can be contained in a section:

� Persistents store user-defined data
� Methods contain cases, which in turn contain code. You will be working with

universal methods shortly
� Classes contain attributes and class methods

Working with universal methods

You will not be working with classes until you are ready to put a front end on your
application. For now, you will be working with universal methods, general-purpose
methods not associated with particular classes.

� Double-click on the Universal Methods icon in the Sections of Say It Project
window.

� An empty Universals of Say It Section window opens.

Some Marten basics 12
A Universal Methods window displays all the universal methods contained in a
section.

� COMMAND-click anywhere in empty space in the Universal Methods window.

An untitled universal method icon is created.

� Type Circumference and press RETURN to name the new method.

� Double-click on the Circumference icon.

A Case window opens.

Methods, both universal methods and class methods, are composed of one or more
cases. A case of a method is analogous to a case of the case or switch statement in other
programming languages. Marten provides logic for moving from case to case of a
method. In fact, the case mechanism is a large part of control flow in Marten.

Some Marten basics 13
The Case window currently is empty with the exception of two horizontal bars: the
input bar and output bar operations which provide the method with inputs and outputs.

What goes on in methods
Ultimately, your application is going to take a character string as an input and have your
computer “speak” that character string. Before working toward that functionality,
though, it is worthwhile to take a look at what goes on inside a method. In doing so,
you will create a method that calculates the circumference of a circle, given the radius.

� While holding down the COMMAND key, click about an inch below the input bar
and toward the left of the window.

An untitled operation is displayed.

� Type ask and press RETURN.

The appearance of the operation changes.

What are operations?
Operations are the basic unit of execution in Marten. They perform some action. For
example, an operation could call a primitive, return the value of an attribute, or call a
method. There are a number of different types of operations in Marten and you will see
more of them as you proceed.

In this case, when you typed ask, Marten recognized the name of a primitive loaded
when you added libraries, earlier.

The ask primitive prompts the user for input which can then be passed to another
operation. The node at the bottom of the operation is an output root; By default, the
ask primitive takes no inputs and returns a single output: what the user typed.

In this method, the ask primitive will be used to prompt the user for the value of the
radius.

Some Marten basics 14
� Once again COMMAND-click, this time below and to the right of the ask
primitive.

Another operation is created.

� Type power and press RETURN.

The power primitive performs exponentiation. It takes two inputs, the number and the
exponent. This is reflected by the fact that the operation now has two input terminals.
The power primitive returns a single output, the result.

You are beginning to see the purely visual aspect of Marten. While other “visual”
development environments take a visual approach for higher level aspects such as user
interface design, Marten is visual at the lowest levels.

� Click on the ask primitive’s output root to select it.

� While holding down the OPTION key, move the pointer directly over the power
primitive’s leftmost input terminal and click.

A datalink is created.

What is a datalink?
Marten is a dataflow language. In a typical procedural language, variables are declared
and the values of these variables are manipulated by sets of instructions. In Marten,
data passes from operation to operation via datalinks. The output of the ask primitive
will be passed as an argument to the power primitive.

� Double-click the power primitive’s rightmost terminal.

A constant with an initial value of NULL is created.

Different types of operations have different icons. Up until now you have been typing
in only names which Marten recognized as primitives. When Marten recognizes a
name as a primitive, the icon is automatically changed from a simple icon to a primitive
icon. As you work through the Marten learning curve, you will learn more about
different icons and their meanings by using the options available through the
Operations menu.

� Type 2 and press RETURN.

Remember: the circumference of a circle = pi * r2

� COMMAND-click, this time below and to the right of the power primitive then
type * and press RETURN.

This creates a call to a primitive that performs multiplication.

Some Marten basics 15
� Click on the power primitive’s root to select it then OPTION-click directly over
the * primitive’s leftmost terminal to create a datalink between the two operations.

� COMMAND-click above and to the right of the * primitive.

� Type pi.

The Simple operation is changed to a Primitive operation.

You could have once again used a constant to pass the value but Marten has a primitive
that returns the value of pi.

� Create a datalink from the pi primitive to the * primitive’s rightmost terminal.

Due to the default size of a Case window, the window can get cluttered pretty quickly.
This is easily remedied by making the window bigger and moving your operations to
make the method more “readable.”

� Click drag the grow box down and to the right to open up the window about an inch
wider and longer.

� Click-drag the output bar toward the bottom of the window to free up some space
for more operations.

� Rearrange the other operations in this case so that it looks like the following
diagram

Some Marten basics 16
Note that as you move operations around the case window, all terminals, roots, and
datalinks remain intact.

If you were to execute your method right now, a generic dialog box would prompt you
for the value of the radius. A minor customization can be achieved with a single
operation.

� Move the cursor to a location just slightly above the ask primitive.

� COMMAND-click there to create another terminal:

While some primitives have a fixed arity, the number of inputs and outputs, others
allow you to create more terminals and roots.

Should you accidently create an operation and wish to delete
it:

� Click once outside the operation to disable text editing.

� Click the operation once and press DELETE.

Some Marten basics 17
� Double-click on the new terminal.

This is a shortcut that creates an attached constant with an initial value of NULL.

� Type Enter the radius of the circle, in inches: and press RETURN.

This provides a minimal front end for your input dialog. Later on, you will see how
Marten allows you to quickly and easily build a sophisticated graphical user interface.
Presumably, you would want to customize the output of your method, but for now just
assume that the value of the pi * (r**2) calculation returns a value expressed in square
inches. With that in mind, the output of the method can be handled with a single
operation.

� Create a new operation below the * primitive, name it show, and place a datalink
between the * primitive’s output root and the show primitive’s input terminal.

The show primitive will display the result of the calculation.

By now your method should look something like the following:

Some Marten basics 18

3

3Using debugging and testing features
� Executing your method

� Adding error processing to your method
� Controlling sequence of execution

� Looking at a debugging tool

You are now ready to execute this bare bones method. In this chapter you learn will
how Marten lets you execute your code in interpreted mode.

Executing your method

When you started this exercise, in addition to providing names for the project and
section, you provided a name for the Project application. The Project application runs
as a process separate from the Editor environment and it has two key functions. It lets
you run methods or applications in interpreted mode and when updated properly, it
allows your project to run as a stand-alone Macintosh application.

For now, you will look at some of the interpreted code features.

� With your Circumference case window frontmost, from the Run menu choose
Run Method.

A dialog box is displayed prompting you to enter a value.

Using debugging and testing features 20
� Type 3 and click the OK button.

The result is displayed.

� Click OK to close the window and finish execution of the method.

The integrated debugging features put all testing at your fingertips. You can test
individual methods, as you just did, or entire applications. The Interpreter also has
many debugging features, some of which you will see shortly.

Adding error processing to your method

If you were writing a final application, you would want to add some enhancements.
Depending on requirements, this might mean as little as providing more information in
the two dialog boxes or as much as creating a sophisticated graphical user interface for
the application. For now, you will only add some minor error handling.

Forcing an error
As your method currently works, if an end user entered anything other than a number
at the prompt, it would incur a fault or error. To demonstrate:.

Using debugging and testing features 21
� Execute the method again and at the prompt for a number press the RETURN key.

The following error message is displayed:

� Press OK.

You are presented with an execution window, distinguishable from the Case
window by the darker background background.

Using debugging and testing features 22
When the Project application detects a breakpoint or an execution error, it suspends
execution. While you will learn more about breakpoints later on, for now you can
concentrate on execution errors.

When the Project application suspends execution, you have access to Marten’s
debugging features. The Execution window, for example, lets you toggle back and
forth between the Editor environment and execution of your code, and provides options
such as operation-by-operation execution, rollback and roll forward options, and a
variety of ways of stepping through the code.

In order to fix the current problem, it is first necessary to terminate execution of this
method. First, in order to bypass the execution eror on the power primitive, you can
roll forward execution to the output bar.

� COMMAND-click on the output bar

Using debugging and testing features 23
The highlighting shifts from the power operation to the output bar. Like other
operations in a Case window, the output bar is executable.

� Press RETURN to execute the output bar.

This comples execution of the method, closes the execution window, and returns
you to the Circumference case window.

About cases
As a fix to this situation, you will add a test that ensures a number was entered. If the
test fails, you will pass control to a second case of your method, a case that does nothing
more than display an error message.

At the left of the Method window, is the Case dock.

Using debugging and testing features 24
The Case dock lets you create new cases, display the different cases of a method, select
cases for operations such as deleting, and reorder the cases within a method. The
Circumference method currently has only one case:

� COMMAND-click in the Case dock to create a new case.

The Case dock is updated to show a second case.

� Double-click the new (2) icon in the Case dock..

A Case window for the new case opens.

This case will be trivial. Its only task will be to display an error message. It will consist
of two operations: a constant to store the message and a call to the show primitive to
display the message.

� Make the second case of the method look like the following diagram.

The constant’s value should be Hey! That’s not a number...

Using debugging and testing features 25
� Click the left arrow button.

The case containing your calculation is displayed frontmost.

The only remaining thing to do is to ensure that the input is tested and if it is not a
number to pass control to the error handling case.

� Below the ask primitive create a new operation that calls the number? primitive
and create a datalink from the ask’s operation’s output root to the new primitive’s
input terminal.

The number? primitive tests whether its one input is a number. The little box with
the x inside is a Control. Controls are used to aid control flow in a Marten application.
In this case, a Next Case control is attached to the number? operation. If the check
for a number fails, control is passed to the next case of the method.

� Click the Controls menu to take a look at the items in the menu.

Using debugging and testing features 26
The menu items in the Controls menu provide all the control flow functionality you
need to write a Marten application, from case navigation to looping mechanisms.
You’ll learn more about controls as you progress throughthe Marten learning curve.

Controlling sequence of execution

Within a case, an operation will execute as soon as all inputs have arrived on its input
terminals. This would be a problem with the Circumference method since you want
to check the input before performing the calculation.

� Click on the left side of the number? operation, anywhere outside the text area,
to select it.

� While holding down the OPTION key, click on the power primitive.

You’ve just created a synchro. Synchros control the sequence of execution of the
operations within a case; in this case you’ve just ensured that the number? primitive
will be executed before the power primitive. Since operations can only execute when

Using debugging and testing features 27
all inputs are available, you know that the ask primitive will be executed before the
number? primitive.

Looking at a debugging tool

As mentioned earlier, in addition to straight editing capability, Marten lets you run code
interpreted and provides debugging and testing features. It’s time to see some of this
functionality in action.

� From the Run menu choose Debug Method.

This command opens an Execution window on the method letting you execute the
method “manually;” one operation at a time. Walking through the code in this manner
lets you see exactly what is going on in a method as it executes. When the Execution
window opens, the input bar is highlighted, indicating that it is about to execute.

The input bar is executable as are other operations; if your method takes input
parameters, executing the input bar passes the parameters into the method. Likewise,
a constant operation executes; its job is to pass a value to another operation.

Earlier, you simply used the RETURN key to execute an operation. Now it’s time to
try a different method.

� From the Run menu, choose Step.

Highlighting shifts to the constant operation, indicating that the input bar has
executed and the constant is next to execute.

In addition to the Step command that executes the next operation, the Run menu
provides a number of options for stepping through your code. You can:

Step In To a called method to open the case window of that
method for execution.

Step Out To return to a calling method to resume execution of
that method.

Step Over To skip execution of the next operation to execute.

 You’ll learn more about these options as you learn more about Marten.

� Press RETURN to execute the constant operation.

� Now, place the cursor directly over the input terminal of the ask primitive and
click the mouse button leaving it depressed for a few seconds.

The value that has arrived on the ask primitive’s terminal is displayed.

Using debugging and testing features 28
You can well imagine the power of a debugging feature like this. You can inspect
values of the data flowing through a method’s datalinks. And giving you more
debugging power, particularly in the case of execution errors, is the ability to actually
change values on the fly. For now though, you are simply going to finish execution of
your method.

� Press RETURN to execute the ask primitive.

The input dialog for your method is displayed.

� Type f to test if your error processing is working properly then press RETURN.

The Execution window shows that the number? primitive is about to execute.

� Press RETURN to execute the number? primitive.

An Execution window opens for the second case of your method.

� Press RETURN three times and watch as the method executes the remaining
operations and then displays the message indicating that the input was not a
number.

� Keep pressing RETURN until the execution terminates, taking you back to the
Case window for the method.

Single step execution and the ability to display values during execution are just two of
the debugging techniques provided by Marten. You’ll see many more as you become
familiar with the Marten development environment.

4

4Starting your speech application
� What are external procedures

� Finalizing your method

With some Marten fundamentals under your belt, you’re ready to start your speech
application.

What are external procedures

You can start by creating a new universal method.

� In the Universals of SayIt window, COMMAND-click to create a new universal
method, name it Speak-Text, then double-click on the new universal to open it.

� COMMAND-click in the lower part of the Case window to create an operation and
name it SpeakString.

The icon changes slightly to indicate that it is a call to an external procedure.

External procedures are calls to functions and methods written in C. This is the
mechanism by which applications written in Marten make use of public interfaces such
as the Macintosh Carbon API or the APIs for third-party software.

Like the primitives that you loaded earlier in this exercise, external procedures are
stored in libraries. A set of commonly used external procedures is packaged with
Marten and you can also create your own. You create "dictionary" entries for
external procedures, constants, and structures.

Note: In addition to calling third party code from Marten, you can also write your
own primitives.

Ultimately, users of your application will provide a character string as input. Later on,
you’ll build a graphical user interface that passes the text to a method. For now, to
simplify the development process, you’ll use the ask primitive again to prompt for a
character string.

� Near the input bar, create an operation that calls the ask primitive and connect its
output root to the input terminal of the SpeakString external procedure.

Your method should now look like this:

Starting your speech application 30
� From the Run menu choose Run Method.

A dialog is displayed prompting for input.

� Type Hello there, Malcolm. and press RETURN.

While this executes properly from Marten’s perspective, you’ll notice that the speech
produced is not exectly what you would expect. Forgetting low-level details for the
moment, the problem is with the format of the string delivered by Marten. Specifically,
SpeakString, the Macintosh Carbon API routine that does the work of converting the
text to speech, expects a pointer to a string formatted as a Pascal string rather than a C
string.

Finalizing your method

This is easily remedied by tweaking the input to the SpeakString external procedure.
In fact, there is another external procedure that will convert the provided string
appropriately.

� In the Speak-Text method window, click on the ask primitive’s root to select it,
then, while holding down the OPTION key, click on the SpeakString’s terminal
to delete the datalink.

� Create a new operation between the two operations and name it
CopyCStringToPascal.

� Create datalinks between the operations so that the method looks like the
following:

Starting your speech application 31
Now you can properly play the text typed.

� Again, from the Run menu, choose Run Method.

The text you typed is played for you!

Congratulations! You’ve built and executed a method that converts text to speech. This
has been a simple process, showing you some of the fundamentals of Marten and giving
you an idea of its power as a development environment.

Now you can take this a step further and build the user interface that will let a user type
text, push a button, and have the words spoken.

Starting your speech application 32

5

5Loading a framework
� Loading the Small App Framework

� Working with the sections added to our project
� About classes

Marten ships with a number of application frameworks. Each framework consists of a
thorough set of classes aimed at particular development paradigms. Each framework
includes a set of editors that make it easy to make use of these classes and structure
development of your applications. The frameworks are all Marten native code.

In this chapter you will add the Small Application Classes (Small App) Framework to
your project. This will provide the materials you turn your Speak-Text method into a
fully functioning Macintosh application with a slick, graphical front end. It will also
give you a chance to see Marten’s support for object-oriented programming.

Note: Development of the Small Application Classes framework is ongoing and the
following screenshots may differ slightly from the current shipping version.

Loading the Small App Framework

The Small App Framework is contained in a set of sections you can add to your project.

� From the File menu, choose Add To Project.

An Choose Object dialog opens.

� Locate the Small App Framework folder.

By default, it is installed in the /Library/Marten folder

� Select all files in that folder.

Sections are individual disk files that store source code.
Entire applications are held together with a project file that
contains a listing of all the sections included in the
application.

Loading a framework 34
� Click Choose.

Working with the sections added to our project

Your Sections of Say It Project window is updated with the new components. Each
section contains a functionally-related "unit" of code consisting of classes, univeral
methods, and persistents.

When you first started this tutorial you created a new section. This time, you added
existing sections to your project. As you get more experienced with Marten you will
use the sections mechanism to reuse commonly used code.

Most people have a preference for the order of sections. You can reorder your sections
by dragging a section up or down to a new location.

� Reorder your sections so that your Sections window appears as follows:

Loading a framework 35
Note: Each ... Editor section implements a visual editor for working with instances
of the associated class. You’ll work with these editors shortly.

Loading a framework 36
About classes

You’ve already seen universal methods as components of a section. Now it’s time to
take a look at another section component: classes. Remember: each section entry has
icons representing the section’s classes, universal methods, and persistents.

� Double click on the Small Menu section’s class icon.

A Classes of Small Menu window opens.

This is the Class window, another of the Marten development environment’s native
editors. The Class window lets you work with the classes in a section. Typically, a
section will contain a set of related classes.

As in all OOP implementations, classes are composed of methods and attributes.
Attributes are further broken down into Instance attributes and Class attributes. This is
reflected in the set of icons representing each class.

Loading a framework 37
Unlike some other OOP implementations in which an existing programming language
is beefed up with class support, Marten was designed for object-oriented programming.
Classes, methods, and attributes are integral aspects of Marten.

� Double-click the Instance attribues icon of the Small Menu class.

An Instance Attributes of Small Menu window opens.

This class is used to create and programmatically manipulate instances of a standard
Macintosh application menu. Its attributes store the properties of a typical Mac menu:
the items appearing in the menubar, and so on.

� Close the Instance Attributes window then double-click the Class Methods icon of
the Small Menu class.

A Methods of Small Menu window opens.

The methods of the Small Menu class provide all the basic functionality required to
work with instances of that class. The methods whose names start with Get, for
example, return the values of attributes.

� Double-click on the method icon labelled Open.

The first case of the method opens.

Loading a framework 38
Note the Menu Items operation. Once again, this is an operation you haven’t seen
before.

It’s a Get operation. Given an instance as input, it returns the value of the attribute
indicated by its name. It also returns the instance. While the use of Get in the method
name is a simple convention, Get operations, like their counterparts Set operations, are
parts of the Marten language. You’ll get more familiar with class-specific language
components of the language as you work more with Marten.

� Close the Open, Methods of Small Menu, and Classes of Small Menu windows.

6

6Building the user interface
� Key properties of your application

� Specifying a MAIN method
� Key universal method updates

� Running your application
� Modifying code on the fly

� Generating a standalone application

In this chapter you will use the Small App Framework sections to turn your Speak-Text
method into a Macintosh application.

Key properties of your application

Your first task is to create an application. The framework you loaded has an application
class named Small Application that has many attributes that your speech application
will need. You can create a new class and then make that class a subclass of the
provided application class.

� In the Sections of Say It Project window, double-click the classes icon of the Say
It Section.

A Classes of Say It Section window opens.

This window is currently empty since you haven’t created classes for this section yet.

� Command-click in the Classes window to create a new class.

� Name the class Say It Application.

Now you can designate this class as a subclass of the Small Application class. Marten
makes this very easy.

� Holding down the CONTROL key, click on the new class, and then from the
context menu choose Parent Class, and then choose Small Application.

Building the user interface 40
The Say It Application class item is updated to indicate that its parent class is
Small Application.

Creating an application instance
Now that you have an application class, you can create an instance of the application.
You’ll create this using a Marten persistent. A persistent stores data ranging from
simple data types to complex class instances. It is similar to a global variable in other
languages. Range of use of persistents is varied as well. In addition to storing instance
values, you can use persistents to store values between interpreted executions of your
code.

� In the Sections of Say It Project window, double-click the persistents icon of the
Say It Section.

An empty Persistents of Say It Section window opens.

� Command-click in the Persistent window to create a new persistent.

� Name the persistent The Application.

� Double-click the new persistent item.

A NULL Value window opens.

The Value window is another of Marten’s native editors. It lets you view,create, and
modify simple data, lists, and objects. A key feature of the Value window is allowing
you to specify or change types. In this case, you want to create an instance of the
subclass you just created.

� From the Type popup, choose Say It Application.

The title of the Value window is updated to indicate a Say It Application instance.
Also, the Value window shows the default attributes that the Say It Application class
inherited from Small Application.

Building the user interface 41
Editors for working with class properties
While a Marten Value window provides the ability to edit the instance, the framework
you loaded includes an editor that makes modifying the attributes of your Say It
Application much more convenient.

� From the View popup menu, and select Application Editor.

The editor for Small Application opens. The Application editor provides hierarchical,
or drill-down, access to the various components of your application.At the highest
level, you have access to the applications menus, windows, handlers, and objects.

Adding a menu
The initial display shows the available menus you can install.

Building the user interface 42
A good debugging practice is to include the "canned" System Menu in your
application. When an application is running in interpreted mode, the Marten editor
cannot regain control of the application unless execution is suspended. This could
cause a problem, for example, if a fault occurs within the application’s event loop. The
System Menu has a Switch To Editor command that will return control to the Marten
editor.

� Select the System Menu item in the Available Menus list and click the Add
button.

A System Menu is added to the list of installed menus.

Building the user interface 43
Adding an event handler
When you use the Switch To Editor menu command, a halt event is sent to the
application. In order to process that halt event, you must install an event handler that
designed for that purpose. There is a simple handler that is designed specifically to
handle the halt event.

� Click on the Handlers segment of the top "segmented" view.

The lists of available and installed handlers are shown.

� Select the Application Halt Handler and add it to the list of installed handlers.

Adding a window
Next, you can set up your application’s one window.

� In the Application editor, click on the Windows segment

The lists of available and initial (installed) windows are displayed.

� Select Small Window and add it to the Initial Windows list.

Building the user interface 44
� Select the Small Window instance in the Initial Windows list and click the Edit
button to open a Window editor.

A window editor opens.

This editor is a bit more complex and initially consists of two windows, a WYSIWYG
Window Editor and a palette of controls that can be dragged and dropped onto the
Window Editor.

The (0 0 300 400) designation shows the current frame. If nothing is selected, it is the
frame of the edited window content region which is initially 300 vertical pixels by 400
horizontal pixels.

The Say It window will have three controls:

Building the user interface 45
� A static text control
� An edit text control
� A push button control.

You can start by adding the static text control to the editor.

� Mouse down on a static text control and drag it onto the editor.

A new static text control appears in the editor.

This editor lets you drag controls to position them but you can position things more
accurately by opening another editor.

� Double-click directly on the new control.

A Static Text editor opens.

Building the user interface 46
� Change the dimensions and text to match the above and click the OK button.

� Double-click the edit text control to open its editor.

Building the user interface 47
� Change the dimensions and values to match those above and click the OK button.

Building the user interface 48
Adding a push button to the window
The Window Editor should now look something like the following.

� Drag the push button control onto the canvas

� Double-click the new push button.

A Push Button editor opens.

� Set the title of the button to Say It! and edit the attributes of the push button to those
shown below.

Now unlike the other controls, you want this control to take some action when the push
button is clicked. When the button is clicked, a Control Hit event is sent to the button.
Consequently you will have to install an event handler so that the button can handle this
click event.

� Select a Small Event Handler and add it to the installed list of handlers.

Building the user interface 49
The Application Halt Handler that you added earlier was specific in the events it
handled. The Small Event Handler is not. It is just a generic handler of events and you
have to specify which events to handle. To do this, you edit it.

Building the user interface 50
� Select the Small Event Handler in the list of installed handlers and click the Edit
button.

An Event Handler editor opens.

For such a simply functioning control, you will only need to handle a single event. The
event you are interested in handling is a Control Hit event.

� Select a Small Event Specifier and add it to the installed list.

Next, you must specify the event to handle, a Control Hit event.

� Select Small Event Specifier in the installed list and click the Edit button.

The Event Specifier editor opens.

� From the Class dropdown, choose kEventClassControl.

� From the Kind dropdown, choose kEventControlHit.

Building the user interface 51
Now you can specify the behavior that responds to the event. This is the method that
will execute.

� Click the Edit Behavior button.

A Behavior editor opens.

You want to invoke the now-familiar Speak-Text method. Shortly, you will make a
minor modification to the method so that it works in this context.

� Set the Method Name to Speak-Text.

You want the application to "speak" the text currently populating an edit text control.
Now you should specify that window item as an input or "parameter" for the behavior.

� Select a Small Parameter Window Item and add it to the installed parameters list.

You will have to edit the window item to make the Edit Text control the input.

� With the Small Parameter Window Item selected, click the Edit button.

Building the user interface 52
A Window Item Parameter Editor opens.

It has a combo box that discloses a list of the names of the available controls in the
window. Specifically, you want the edit text control named Edit Text.

� Select Edit Text from the combo box and click the OK button.

� Continue to close the editors by clicking the OK buttons until you are back at the
Window Editor.

Now you need to edit some properties of the window, like its name and background.
These properties are accessed by opening a drawer.

� Click the Drawer button.

The properties drawer opens.

Building the user interface 53
� Change the title to Say It!.

� Choose kThemeBrushUtilityWindowBackgroundActive from the Background
dropdown.

� Click the Drawer button again to close the drawer.

The window should now look like the following:

This completes your window editing.

� Click the OK button on the window editor.

� Click the OK button on the Application editor.

This returns you to the original Say It Application Value window. It now displays
attributes with your newly edited values.

Building the user interface 54
� Commit these changes by clicking on the OK button.

The Application persistent now displays a value of an instance of the Say It
Application class.

Specifying a MAIN method

When a user double-clicks on your final application, the application has an initial
method that executes. In Marten, this is referred to as the MAIN method. In
development, you must designate a particular method to be the "MAIN" method. This

Building the user interface 55
method can do anything but is most useful when it executes an instance of an
application. You will now create such a method to execute your Say It application.

� Open the Universals window for the Say It section.

� Create a new universal named Execute Say It.

Marten makes it easy to designate the MAIN method.

� While holding down the CONTROL key, click on the Execute Say It! method,
choose Install from the context menu, and then choose Main.

Display of the method in the Universal Methods window changes to indicate that the
universal item is now the MAIN method for the project.

Building the user interface 56
Key universal method updates

To account for the changes you’ve made, you’ll have to make the following
modifications:

� Have your Speak-Text method accept input from the edit text in the window you
created

� Have your MAIN method execute the application instance.

Modifying your Speak-Text method
Earlier, in "Adding a window" on page 43, two of the keys tasks were:

� Adding an edit text where users can type the text to be spoken
� Adding a push button to initiate speaking the text.

When defining the push button’s behavior, you specified that upon receiving a Control
Hit event, the application pass the current instance of the edit text as an input to a
universal called Speak-Text.

Currently, your Speak-Text method prompts the user for text using the ask primitive.
You’ll have to modify it to accept an instance of the edit text as an argument to the
method.

� Open the Speak-Text universal method.

� Click on the ask operation and press DELETE.

� In the same location, COMMAND-click to create a new operation.

� Name it /Get Value.

This is a call to a class method. Marten provides a number of different takes on calls
to methods. In this case, the slash preceding the method name, specifies a data-driven
reference. Since the input to the method will be an edit text instance, Marten will
execute a method named Get Value defined for that class.

� Click on the terminal at the top of the /Get Value operation.

� With that terminal selected, OPTION-COMMAND-click very close to the bottom
of the input bar.

This is a shortcut for creating a datalink to another operation and simultaneously
creating a root on the other operation. The new root on the input bar is the method by
which parameters are passed into the method.

� Click on the root at the bottom of the /Get Value operation.

� With that root selected, OPTION-click on the rightmost terminal of the
CopyCStringToPascal operation.

By now, the affected area of your case should look like the following:

Building the user interface 57
Lastly, an event behavior must return a constant indicating whether the event was
handled successfully or not.

� COMMAND-click just above the top of the output bar to create a terminal.

� Double-click the new terminal to create a new constant operation with a single root,
connected by a datalink to the input bar.

� Name the constant noErr.

You method should now look like the following:

Building the user interface 58
Modifying the Execute Say It! MAIN method
As well, you have to modify the Execute Say It! universal to actually run the
application you’ve created. Remember: all of the application attributes you worked
with in previous steps are stored in a persistent called The Application. The Say It
Application class has a method called Execute that it inherited from the Small
Application class. It will generate your application from the properties you provided
in the persistent, The Application.

In addition, a MAIN method has a list of command line argument strings as input
(which we ignore) and must return a constant to the system. The standard value for this
constant is 0, so the MAIN method should return 0.

� Open the Execute Say It! method and edit it so that it looks like the following:

� Close the method.

Running your application

Previously, in order to inspect execution, you ran an individual method. Now that your
application has a MAIN method, the Run Application command is available.

� From the Run menu, choose Run Application.

The application runs and puts up a Say It! window.

Building the user interface 59
� Type Testing into the edit text box and click the Say It! button.

The text is spoken.

Modifying code on the fly

After the text has been spoken it remains in the edit text box. One change you could
make is to clear the text from the edit text box each time the text has been spoken.
Marten has the ability to edit code while a method is executing if the method can be
halted. You accounted for this eventuality by installing the standard System menu and
the Application Halt handler. Consequently, a new menu item has appeared under the
Quit menu command in the Say It system menu.

� From the System menu, select Switch To Editor.

Building the user interface 60
The halt mechanism is a simple breakpoint, so the method halts and a debug window
opens up at the breakpoint. At this point, control has been returned to the Marten IDE
process and you can now edit a case, add a universal, delete a class. All normal
functionality of the Marten IDE is available EXCEPT the ability to run another,
different method. If you try, this Event Command Halt method will resume instead.
Currently, only one method in a project can be executing at any one time.

Once the application has been halted by hitting the breakpoint in the "halt" method, you
are free to make any changes you want to the code. In particular, can now modify your
Speak-Text method to clear the text from the edit text box after the text has been
spoken.

� Open the Speak-Text method.

� Modify it to look like the following:

Building the user interface 61
Notes:

1. If you’ve forgotten how to create a synchro, see "Controlling sequence of
execution" on page 26.

2. The constant passing the value to the rightmost /Set Value terminal is an empty
string.

Generating a standalone application

Now that you have your application working the way you want it to, you can easily
generate a standalone application, one that sits on the desktop and can be double-
clicked to launch. To create your standalone application, you need to update your
project application with all of the code you just created.

� From the File menu, choose Update.

Building the user interface 62
Your project application is now a standalone application.

Double-click it. It runs just like it did in the Marten environment.

7

7Summary
� Base documentation set

� Sample code
� Other sources of information

This tutorial has walked you through the basics of Marten programming and touched
on many of the high points of the Marten development environment. The following
topics tell you where to go next to continue your progress in becoming an expert in the
use of Marten:

Base documentation set

In addition to this guide, the base documentation set for Marten has the following titles:

Marten User Guide This book is the definitive guide to use of the Marten
development environment. It provides details on the
Marten language, basic operations, project and
section maintenance, editing and debugging features,
and direction on creating compiled applications.

Marten Primitives Reference This book provides everything you need to know to
work with the primitives packaged with Marten. This
includes details on the contents of each library
containing primitives, and how to locate and load
libraries, as well as detailed description of the
purpose, inputs, and outputs of each primitive
packaged with Marten.

Sample code

Complete Marten source code for a number of sample applications is packaged with
Marten. By default, it is installed in the /Samples/Marten folder. Inspecting this code
and watching it execute is valuable experience in becoming an experienced Marten
programmer.

Summary 64
Other sources of information

The Support page on the Andescotia Web site is a source of additional documentation,
examples, and other helpful resources. It is available at http://www.andescotia.com/
support/.

http://www.andescotia.com/support/
http://www.andescotia.com/support/

Index
A
APIs 29
application

naming 8
application class

creating instance 40
dedicated editor 41
introduced 39

arity 16
attributes

access from Class window 36
access from section icon 11
introduced 37

C
C code, Prograph acces to 29
Case windows

resizing 15
case windows

access from Universal Methods window 12
cases

creating 24
defined 12
flow of control 25

class methods 37
access from section icons 11

classes
access from section icon 11
accessing attributes/methods 36
creating 39
creating subclasses 39

icon 11
introduced 36

Classes windows
opening 39

constants
creating 14

Control Hit event
event handlers

for Control Hit event 48
controls

introduced 25

D
dataflow 14
datalinks

creating 14
defined 14

E
editors

framework/class 41
event handler

for Halt event 43
execution windows

introduced 21
external procedures

introduced 29

G
Get operations 38

H
Halt event 43
Handlers 43

I
icons

Projects window 8
universal method 11

input
to operations 14

input bar 13
instances

creating in Value window 40
Interpreter

inspecting values 28
introduced 19
single step operation 27

L
libraries

adding to project 9
icon 8

M
Macintosh Toolbox 29
menus 42
methods 36

access from Classes window 36

N
Next Case control 25

O
operation

sequencing execution of 26
operations

creating 13
defined 13
Get/Set 38
moving 15

output
from operations 13

output bar 13
moving 15

P
persistens

introduced 40
persistents 11

creating 40
icon 11

Persistents windows
opening 40

primitives
ability to create 29
introduced 13

Project application
naming 8

Project windows
introduced 7

projects
creating 8
creating sections in 10
introduced 8
loading libraries 9
namimg 8

push button 48

R
resources

icon 8
roots

introduced 13

S
section windows 11
sections

access to classes of 11
creating 10
icon 8, 11
introduced 10
naming 10
of a project 11
saving 11

Sections window

icons 11
introduced 11

Set operations 38
Single Step execution 27
Small App Framework

opening 33
static text control 45
subclassing 39
Switch To Editor 42
synchros

defined 26
System Menu 42

T
terminals

introduced 14
types, changing 40

U
Universal Methods

cases of 12
universal methods

aborting execution 23
executing 19
icon 11
introduced 11

Universal methods window
introduced 11

untitled projects 11

V
Value windows

opening 40

W
windows

adding to application 43
case 12
classes 36
section 11

	Introduction
	About the quick start
	About the application

	Some Marten basics
	Starting Marten
	Project, library, and section basics
	Adding libraries to your project
	Adding a section to your project

	Working with universal methods
	What goes on in methods
	What are operations?
	What is a datalink?

	Using debugging and testing features
	Executing your method
	Adding error processing to your method
	Forcing an error
	About cases

	Controlling sequence of execution
	Looking at a debugging tool

	Starting your speech application
	What are external procedures
	Finalizing your method

	Loading a framework
	Loading the Small App Framework
	Working with the sections added to our project
	About classes

	Building the user interface
	Key properties of your application
	Creating an application instance
	Editors for working with class properties

	Specifying a MAIN method
	Key universal method updates
	Modifying your Speak-Text method
	Modifying the Execute Say It! MAIN method

	Running your application
	Modifying code on the fly
	Generating a standalone application

	Summary
	Base documentation set
	Sample code
	Other sources of information

	Index

