
Primitives Reference
Revision 1.0
Dec. 29, 2005

2

Andescotia and the Marten logo are trademarks of Andescotia LLC.

Marten is a trademark of Andescotia LLC, registered in the U.S.

Codewarrior is a trademark of Metrowerks Corporation, registered in the U.S.
and other countries.

Xcode and MacOS are trademarks of Apple Computer, Inc., registered in the U.S.
and other countries.

© Copyright 2005. Andescotia LLC. ALL RIGHTS RESERVED.

It should be understood that Andescotia LLC reserves the right to make changes
at any time, without further notice, to the Marten Integrated Development
Environment (IDE) suite of software, documentation, example code, and related
materials in order to improve them. This document is a member of that suite of
products.

In addition, Andescotia LLC does not assume any liability arising from the
application or use of any product in the Marten IDE product suite.

The products of the Marten IDE suite are not authorized for use in any capacity
to develop software applications where the failure, malfunction, or any inaccuracy
of the developed application carries a risk of death, bodily injury, or damage to
tangible property. Examples of (but not limited to) such proscribed uses are
control systems, medical devices, nuclear facilities, banking and other financial
software, and emergency systems.

Documentation that is supplied in electronic form may be printed for use by the
purchaser under their rights to "fair use". Except for "fair use" purposes, no
portion of this document or any of the Marten IDE product suite may be
reproduced or transmitted in any form or by any means, including electronic or
mechanical, without prior written permission from Andescotia LLC.

ALL SOFTWARE, DOCUMENTATION, AND RELATED MATERIALS OF
THE MARTEN IDE PRODUCT SUITE ARE SUBJECT TO THE MARTEN
IDE ANDESCOTIA END USER LICENSE AGREEMENT.

Andescotia LLC Contact Information

Office: Andescotia LLC

524 Fieldstone Dr.
Bozeman, MT 59715

Website: www.andescotia.com

Technical Support: techsupport@andescotia.com

http://www.andescotia.com
mailto:techsupport@andescotia.com

1

Contents

Contents .. 3

Chapter 1: Working with libraries ... 5
Library contents .. 5
Loading libraries ... 5
Viewing the libraries in a project ... 7

Chapter 2: Marten Primitives.. 9
Primitive documentation conventions ... 9

Syntax description .. 10
Categorized primitive information ... 12

Primitives by category .. 12
Bit ... 13
Callbacks .. 16
Data .. 20
File ... 22
Graphics ... 26
Input/Output ... 29
Interpreter control ... 31
List .. 31
Logical/Relational ... 40
Math ... 45
Memory .. 53
String .. 58
System ... 63
Type ... 66

Index.. 71

1

1Working with libraries
� Library contents
� Loading libraries

� Viewing the libraries in a project

Every computer language has operators which generate new data from old. For
example, the C language has the operators +, &&, and <<. These operators are part of
the definition of the C language. The Marten IDE is somewhat different in that there
are very few defined operators (one example is the "Get" operator). Instead, operators
are added to a project, as needed. This allows different projects to use different sets of
operators. These operators are called primitives and are contained in libraries which are
placed into a project using the Add To Project command under the File menu.

Library contents

The following table shows the categories of primitives contained in the libraries
packaged with Marten:

Loading libraries

In order to make use of standard primitives, custom primitives, or external definitions,
you must first load the library containing those resources into your project.

For information on contents of the standard libraries delivered with Marten, see
"Library contents" on page 1.

Library contains the following primitive categories...

Standard Bit, Callbacks, Data, Interpreter control, List, Logical/Relational,
Math, Memory, String, System, Type,

Carbon File, Graphics, Input/Output

Working with libraries 2
� To load a library into your project:

1. From the File menu, choose Add to Project.

A Choose Object navigation dialog opens.

2. Use the Choose Object dialog to locate and select the library or libraries you want
to add to your project. Libraries are usually installed in the /Library/Frameworks
directory or in the user-relative directory, ~/Library/Frameworks.

3. Click Choose.

Once you save a project to which you have added a library, that library is subsequently
added to the project automatically whenever you load the project into Marten.

Working with libraries 3
Viewing the libraries in a project

You can view the libraries loaded into a project and inspect their contents.

� To view the libraries currently loaded into a project:

1. Double-click the primitives icon of a project item in a Projects window.

A Primitives of Project Name window opens.

2. Double-click a library icon to display its primitives.

A Primitives of Library Name window opens.

Working with libraries 4

2

2Marten Primitives
� Primitive documentation conventions

� Primitives by category

This chapter tells you everything you have to know about the built-in Marten
primitives. It provides details on how primitives are documented in this chapter,
provides a categorized listing of all available primitives, and includes a detailed
description of each primitive.

Primitive documentation conventions

Primitive descriptions in this chapter have two components:

� Syntax description - a graphic depiction of the primitive operation that provides a
syntax diagram

� Categorized primitive information - provide details on the function of the
primitive, inputs and outputs, and other information required to use the primitive.

The following provides an example of the typical information required to use a
primitive:

round-down

Description Returns the nearest number less than or equal to the provided
number according to the provided precision. Positive and negative
values for the precision parameter dictate the number of decimal
places to the right and left of the decimal point, respectively.

Inputs Number <number>:
Precision <integer>:

Default(s) Precision = 0 (return an integer).
Outputs Result <number>:
See also trunc, round, round-up

Marten Primitives 2
Syntax description
The graphic shown with each primitive description acts as a syntax description for that
primitive; it shows the primitive’s default arity (numbers of inputs and outputs), as well
as any optional terminals or roots. Each terminal or root node is labelled with a
meaningful name.

Simple variable arity primitives
Some primitives have optional inputs or outputs. These are called variable arity
primitives. For this type of primitive, names of optional parameters are enclosed in
square brackets [].

For example, the div primitive has an optional Dividend input.

If two or more optional inputs are paired within square brackets, all must be provided.

Primitives with a variable number of inputs
In some cases, a primitive accepts a variable number of similar inputs. The "join"
primitive, for example, concatenates two or more strings, making the first two inputs
mandatory and additional inputs optional. The syntax diagram for this type of
primitive looks like the following:

Conditional inputs
Some optional input parameters are actually conditional. For example, the make-list
primitive has only one required input: Length. Optionally, you can provide a Start
input and IF AND ONLY IF you provide a Start input, you can also provide a Step
input. The syntax diagram for such a primitive looks like the following:

Variable type parameters
Some primitives accept an input or produce an output of more than one type. For
example, a primitive that searches a list for an item with a particular value, might accept

Marten Primitives 3
both integers and strings as the value to be found. In the detailed descriptions for such
a parameter, all valid datatypes are listed.

Some primitives have parameters that accept virtually any type of Marten data. For
example, a primitive that creates a list from a set of values will allow you to create list
of values of any valid Marten datatype. The description for such a parameter has the
<any> type designation. Read the entire description for such a primitive as there may
be exceptions.

Primitives that return boolean results
Certain primitives perform tests or manipulate boolean input values to obtain a boolean
result. Every such boolean primitive can either have one root, in which case it returns
TRUE or FALSE, or no roots, in which case it succeeds or fails. Use an output root on
a boolean primitive if you need to do further calculations with the boolean results such
as "AND" the result with the result of another boolean primitive.

If a boolean primitive is used without a root, it should have an associated control so that
possible failure of the operation does not result in an execution error:

The boolean primitives are those listed under in the Logical/Relational category, as
well as any primitive with a question mark (?) at the end of the name.

Notes on lists and indices as inputs
Certain primitives have a list and one or more integers as input, where the integers are
indices into the list or the list of lists. An example of this is the primitive get-nth:

get-nth

Description Given a list, returns an element specified by index. This primitive
can also return elements from nested lists by passing it additional
index numbers.

Inputs List <list>: the list to be searched.
N1 <integer>: for a simple list, the index of the element to be
returned; for a list of lists, the index of the nested list.
N2 ... <integer>: the index of the element within a nested list or
the index of another nested list. The final terminal must be the
index of the element to be returned in the deepest nested list.

Outputs Element <any>:
See also insert-nth, set-nth, set-nth!, split-nth

Marten Primitives 4
If such a primitive receives an integer less than 1 or greater than the length of the list it
accesses, an Out of range execution error occurs.

Categorized primitive information
Documentation for each primitive includes all details you need to work with the
primitive. This information is categorized to make lookup easy. The most common
categories are:

Description Provides a straightforward description of the purpose
of the primitive.

Inputs Provides the names and types of inputs and, as
required, further details or elaboration.

Outputs Provides the names and types of outputs and, as
required, further details or elaboration.

See also Provides a listing of related primitives.

Other categories include:

Compiler Notes any differences in behavior of the primitive in
compiled versus interpreted execution.

Default(s) Provides any default values for parameters.

Equivalent If another primitive provides identical function, its
name is provided.

Example Provides an example of the primitive.

Note Provides any important or obscure details about usage
of this primitive.

Side effects Describes any additional or non-obvious processing,
such as whether input values are altered.

Primitives by category

The primitives delivered as part of the standard Marten package, fall into the following
categories:

� Bit
� Callbacks
� Data
� File
� Graphics
� Input/Output
� Interpreter control
� List
� Logical/Relational
� Math
� Memory
� String

Marten Primitives 5
� System
� Type

Bit
The Bit primitives allow you to perform bit arithmetic on Marten Integer data types.
Currently Marten Integers store their values as 32-bit integers. Each description of a
bit operation provides an example of the operation result.

The following primitives are provided:

bit-and The output is the bitwise AND of two integers.

bit-not The output is the bitwise COMPLEMENT an integer.

bit-or The output is the bitwise OR of two integers.

bit-shift-l The output is a bitwise shift left by one or more places
on an integer. The rightmost bits of the result are set
to zero (0).

bit-shift-r The output is a bitwise shift right with sign extension
by one or more places on an integer.

bit-xor The output is the bitwise EXCLUSIVE-OR of two
integers.

test-all? The output is TRUE if all of the set bits of an integer
correspond to the set bits of a provided mask.

test-bit? The output is TRUE if the bit in a specified position
of an integer is set.

test-one? The output is TRUE if ONE of the set bits of an
integer corresponds to one of the set bits of a provided
mask.

bit-and

Description The bitwise AND of two integers is output. For example the result
for 5 (b101) and 3 (b11) is 1 (b1).

Inputs Returns the bitwise AND of two integers.
Inputs InBits1 <integer>:

InBits2 <integer>:
Outputs OutBits <integer>:
See also bit-not, bit-or, bit-shift-l, bit-shift-r, bit-xor

Marten Primitives 6
bit-not

Description The bitwise COMPLEMENT of an integer is output.
Inputs InBits <integer>:
Outputs OutBits <integer>:
See also bit-and, bit-or, bit-shift-l, bit-shift-r, bit-xor

bit-or

Description The bitwise OR of two integers is output. For example the result
for 5 (b101) and 3 (b11) is 7 (b111).

Inputs InBits1 <integer>:
InBits2 <integer>:

Outputs OutBits <integer>:
See also bit-and, bit-not, bit-shift-l, bit-shift-r, bit-xor

bit-shift-l

Description A bitwise shift left by one or more places for an integer is output.
The N rightmost bits of the result are set to zero (0). For example
the result for 5 (b101) shifted left by 2 is 20 (b10100).

Inputs InBits <integer>:
N <integer>: the number of places to the left that each bit is to be
shifted.

Outputs OutBits <integer>:
See also bit-and, bit-not, bit-or, bit-shift-r, bit-xor

Marten Primitives 7
bit-shift-r

Description A bitwise shift right with sign extension by one or more places for
an integer is output. For example the result for 13 (b1101) shifted
right by 2 is 3 (b11) and the result for -13 (b11110011) shifted right
by 2 is -4 (b11111100).

Inputs InBits <integer>:
N <integer>: the number of places to the right that each bit is to be
shifted.

Outputs OutBits <integer>:
See also bit-and, bit-not, bit-or, bit-shift-l, bit-xor

bit-xor

Description The bitwise EXCLUSIVE-OR of two integers is output.
Inputs InBits1 <integer>:

InBits2 <integer>:
Outputs OutBits <integer>:
See also bit-and, bit-not, bit-or, bit-shift-l, bit-shift-r

test-all?

Description Returns TRUE if all of the set bits of an integer correspond to the
set bits of a provided mask.

Inputs Value <integer>:
Mask <integer>:

Outputs boolean
See also test-bit?, test-one?

test-bit?

Description Returns TRUE if the bit in a specified position of an integer is set.
Inputs Value <integer>:

BitPosition <integer>:
Outputs boolean
See also test-all?, test-one?

Marten Primitives 8
test-one?

Description Returns TRUE if ONE of the set bits of an integer corresponds to
one of the set bits of a provided mask. For example the result for
5 (b101) and 3 (b11) is TRUE and the result for 5 (b101) and 2
(b10) is FALSE.

Inputs Value <integer>:
Mask <integer>:

Outputs boolean
See also test-all?, test-bit?

Callbacks
Many languages such as C allow function arguments to be references to other
functions. In the vernacular of C, these references are known as function pointers or
callbacks. A callback is a reference to a function by its address, letting one function call
another, without knowing its name.

The address of the callback is passed as an argument to the function, which in turn, calls
the callback by address to perform specialized tasks.

For example, the following C function, VPL_TestCallback, requires the use of a
callback:

long VPL_TestCallback(long input, void *functionPtr);
long VPL_TestCallback(long input, void *functionPtr)
{

long result = 0;
long (*addOne)(long);

addOne = functionPtr;

result = addSome(input);

return result;
}

The function VPL_TestCallback accepts two parameters, the first is a long integer and
the second is a callback. The declaration of addOne indicates that the callback is a
function that takes a long integer as argument and returns a long integer. An example
of such a callback is:

long MyCallback(long input);
long MyCallback(long input)
{

long result = 0;

result = input++;

return result;
}

Marten callbacks let you write a Marten method that would stand in for MyCallback.
The Marten code for MyCallback would be:

Marten Primitives 9
In order for this method to be used as a callback in Marten, the C function
VPL_TestCallback must be created and a definition of it must be made available to
the MacVPL engine. In addition, a definition of the structure of the callback function
must also be present. An example is presented below:

VPL_Parameter _TestCallbackProc_R = { kLongType,4,NULL,0,0,NULL};
VPL_Parameter _TestCallbackProc_1 = { kLongType,4,NULL,0,0,NULL};
VPL_ExtProcedure _TestCallbackProc_F = {"TestCallback-
Proc",NULL,&_TestCallbackProc_1,&_TestCallbackProc_R};

VPL_Parameter _TestCallback_R = { kShortType,2,NULL,0,0,NULL};
VPL_Parameter _TestCallback_2 = { kPointerType,0,"void",1,1,NULL};
VPL_Parameter _TestCallback_1 = { kLong-
Type,4,NULL,0,0,&_TestCallback_2};
VPL_ExtProcedure _TestCallback_F = {"TestCall-
back",VPL_TestCallback,&_TestCallback_1,&_TestCallback_R};

VPL_DictionaryNode VPX_MacVPL_Procedures[] ={
{"TestCallbackProc",&_TestCallbackProc_F},
{"TestCallback",&_TestCallback_F}

};

Once a Marten extension has been created with those definitions, then the external
procedure TestCallback can be used in a method and the method My Callback can be
supplied as a callback. The following code illustrates this:

Callbacks are an advanced feature of Marten which require some knowledge of C or
Pascal. A Marten method cannot be called directly by address from an external
procedure. In order to provide the external procedure with an address to executable

Marten Primitives 10
code, the Marten implementation of the callback primitive allocates a small amount of
memory and writes a set of instructions into it that can be called directly by C. A
reference to this memory is output from the callback primitive as an allocated block.
This block is what is passed to the external procedure of interest.

Since memory is allocated, it should be freed up by using the dispose-callback
primitive when the callback is no longer needed.

The first input to the callback primitive is the name of the Marten universal method to
be used as the callback (for instance, "My Callback"). The required second input of the
callback primitive is the name of the definition of the of the callback (in this case,
"TestCallbackProc").

The optional third input of the callback primitive is a Marten object that will be passed
in as the first input into the called method. This object is most usefully an instance of
a class, which then allows the callback method to be data-determined (for example, "/
Open"). Since this object will now be "owned" by the system, all Marten references to
the object may disappear. Normally when this happens, the object would be garbage-
collected. To prevent this from happening, any object passed to the callback primitive
has its "system-used" flag set to TRUE. When the object is truly available for disposal,
then the system-used primitive should be used to reset the flag to FALSE to allow the
object to be managed correctly.

Finally, the optional fourth input of the callback primitive is a Boolean. The default
value is FALSE, which means that the arguments to the callback method will be passed
into the method as an equal (or plus one, if the third input is non-NULL) number of
roots of the input operation. If the value is TRUE, then the arguments will be passed
into the method as a list. An example of using the callback primitive in this manner is:

And the callback class method to be called is:

Marten Primitives 11
Note the use of the system-used primitive to allow the instance of Sub Class to be
garbage-collected.

Marten provides the following primitives for working with callbacks:

� callback
� dispose-callback

callback

Description Returns a pointer to universal method suitable for use as a callback
to an external procedure.

Note For background on the use of callbacks in Marten, see "Callbacks"
on page 8.

Inputs MethodName <string>: the name of the universal method to be
used as the callback.
CallbackDef <string>: the name of the definition of the of the
callback
Object <<any>>: the object that will be passed as the first input
into the called method.
ListInput? <boolean>:

Outputs MethodNamePointer <ABlock@>
Default(s) ListInput? = FALSE
See also dispose-callback

Marten Primitives 12
dispose-callback

Description Disposes the memory in the pointer used for the callback. This
primitive must be called after the routine to which the
MethodPointer was passed completes execution and returns.

Inputs MethodPointer <ABlock@>
See also callback

Data
The data primitives provide miscellaneous functionality for working with Marten data.
The following primitives are provided:

copy Creates a copy of a Marten data element.

inst-to-list Returns the class name and a list of instance attribute
values of a provided instance.

list-to-inst Creates and returns an instance of a specified class
with a set of provided instance attribute values.

shallow copy Creates a shallow copy of a Marten data element.

copy

Description Makes a copy of a Marten data element. If the item is a complex
data type (instance or list), the referenced complex objects in the
attributes or list slots are recursively copied to arbitrary depth.
Referenced simple objects (integers, strings, and so on) contained
in the complex object are not copied, but their use counts are
incremented.

Inputs Item <any>:
Outputs ItemCopy <any>:
See also shallow copy

Marten Primitives 13
inst-to-list

Description Returns the class name and a list of instance attribute values of a
provided instance.

Inputs Instance <<any>>
Outputs Class <string>: the name of the class from which the instance was

spawned.
List <list>: a list of the values of all instance attributes.

Note Attribute names are not provided. Attribute values are listed in the
same order in which attributes are displayed in the Attribute
window for the owning class.

See also list-to-inst

list-to-inst

Description Creates and returns an instance of a specified class with a set of
provided instance attribute values.

Inputs Class <string>: the name of the class for which an instance is to
be spawned.
List <list>: a list of values for the class’ instance attributes. The
list should be ordered identically to the order displayed in an
Attribute window for the owning class.

Outputs Instance <<any>>
Note The specified class must already exist, and the number of its

instance attributes must equal the length of the provided list of
instance attribute values.

See also inst-to-list

shallow copy

Description Makes a shallow copy of a Marten data element. If the item is a
complex object (instance or list), the referenced objects (both
complex and simple) in the attributes or list slots are not copied,
but their use counts are incremented.

Inputs Item <any>:
Outputs ItemCopy <any>:
See also copy

Marten Primitives 14
File
The Marten File primitives provide functionality at a slightly higher level than that of
the Macintosh File System. They are intended to provide enough functionality to cover
all common file operations.

The following primitives are provided:

close-file Closes a specified file.

create-object-file Creates a new file of a specified type.

create-text-file Creates a new file of type ’TEXT’.

delete-file Deletes a specified file.

get-file Opens an Open File dialog that lets a user locate,
select, and open a file.

open-file Opens a file with a specified access level.

put-file Opens a Save File dialog that lets a user save a file in
a specified location.

read-buffer Reads in the contents of the file and places them into
an external block

read-object Reads in the contents of a Marten object file and
returns the object.

read-text Reads in the contents of a text file and returns a String.

write-object Writes the provided object to the specified file.

write-text Writes a provided string to a specified text file.

close-file

Description Closes the file identified by the file reference number created by
the primitive open-file.

Inputs Reference number <integer>: The MacOS X file reference
number.

Note The primitive can FAIL if the file cannot be closed.
See also create-object-file, create-text-file

create-object-file

Description Creates a new file on disk. If a file already exists, it is deleted and
then the new one created.

Inputs FSSpec <External Block>: A MacOS X FSSpec structure.
Script code <Integer>: A MacOS X script code returned by
the put-file primitive.
File type <Integer>: A MacOS X file type (for example,
'TEXT').

Marten Primitives 15
Note The primitive can FAIL if the file cannot be created.
See also create-text-file, close-file, open-file

create-text-file

Description Creates a new file on disk of file type 'TEXT'. If a file already
exists, it is deleted and then the new one created.

Inputs FSSpec <External Block>: A MacOS X FSSpec structure.
Script code <Integer>: A MacOS X script code returned by
the put-file primitive.

Note The primitive can FAIL if the file cannot be created.
See also create-object-file, close-file, open-file

delete-file

Description Deletes the specified file.
Inputs FSSpec <External Block>: A MacOS X FSSpec structure.
Note The primitive can FAIL if the file cannot be created.

get-file

Description Opens a MacOS X Open File Navigation Dialog. If the user selects
a file, the type and the FSSpec are returned. If user cancels, then
get-file FAILs.

Outputs File type <Integer>: A MacOS X file type (for example,
'TEXT').

Note This primitive fails if the user cancels the dialog.
FSSpec <External Block>: A MacOS X FSSpec structure.

Example

Marten Primitives 16
See also put-file

open-file

Description Opens the file identified by an FSSpec and returns a file reference
number to be used by primitives such as close-file and read-text.

Inputs FSSpec <External Block>: A MacOS X FSSpec structure.
Outputs Reference number <integer>: The MacOS X file reference

number.
Note This primitive can FAIL if file cannot be opened.
See also create-object-file, create-text-file, close-file

put-file

Description Opens a MacOS X Save Location Navigation Dialog. If the user
saves the file, the type, the FSSpec, and the script code are
returned. If the user cancels, then this primitive FAILs.

Inputs Name <String>: The default name for the file to be saved.
Outputs File type <Integer>: A MacOS X file type (for example,

'TEXT').
FSSpec <External Block>: A MacOS X FSSpec structure.
Script code <Integer>: A MacOS X script code.

Note The primitive FAILs if the user cancels the dialog.
See also get-file

Marten Primitives 17
read-buffer

Description Reads in the contents of the file and places them into an external
block.

Inputs Reference number <Integer>: A MacOS X file reference number
Outputs Content <External Block> The contents of the file. The type of

block is "void".
Note This primitive can FAIL if the contents cannot be read.
See also read-object, read-text, write-object, write-text

read-object

Description Reads in the contents of a Marten object file and returns the object.
Inputs Reference number <Integer>: The MacOS X file reference

number
Outputs Object <any>: Any Marten object.

 Can FAIL if contents cannot be read.
See also read-buffer, read-text, write-object, write-text

read-text

Description Reads in the contents of a text file and returns a String.
Inputs Reference number <Integer>: The MacOS X file reference

number
Outputs Text <String>: The text contained in the file.
Note This primitive can FAIL if the content cannot be read.
See also read-object, read-buffer, write-object, write-text

write-object

Description Writes the provided object to the specified file.
Inputs Reference number <Integer>: A MacOS X file reference number.

Object <any>: Any Marten object.
Note This primitive can FAIL if the object cannot be written to file.
See also read-object, read-text, read-buffer, write-text

Marten Primitives 18
write-text

Description Writes the string to the text file identified by the file reference
number.

Inputs Reference number <Integer>: A MacOS X file reference number.
Text <String>: The text to be written to the file.

Note This primitive can FAIL if the text cannot be written to file.
See also read-object, read-text, read-buffer, write-object

Graphics
The Graphics primitives perform manipulations and calculations on the following
types:

� Point
� RGB
� Rect.

These are represented textually in Marten as two, three, or four integers, respectively,
separated by spaces, inside braces. For example, { 5 8 } is a Point, with a vertical
coordinate of 5 and a horizontal coordinate of 8. { 10 15 20 } is an RGBType, with a
red component of 10, a green component of 15, and a blue component of 20. Finally,
{ 0 0 100 100 } is a Rect, with top and left coordinates of 0, and bottom and right
coordinates of 100.

Note: For more information on these datatypes, refer to the Marten Users Guide.

The following primitives are provided:

list-to-Point Creates a Mac OS X Point from supplied co-
ordinates.

list-to-Rect Creates a Mac OS X Rect from supplied co-ordinates.

list-to-RGB Creates a Mac OS X RGB specifier from supplied
colour values.

Point-to-list Returns the co-ordinates specified by a Mac OS X
Point.

Rect-to-list Returns the co-ordinates specified by a Mac OS X
Rect.

RGB-to-list Returns the individual colour values specified by a
Mac OS X RGB.

Marten Primitives 19
list-to-Point

Description Returns the point two specified by co-ordinates.
Inputs Co-ords-list <list>: the two integers specifying the points co-

ordinates.
Outputs Point <External Block>: a MacOS X Point data structure.
See also Point-to-list

list-to-Rect

Description Returns the Rect specified by a set of co-ordinates.
Inputs Co-ords-list <list>: the four integers specifying the Rect co-

ordinates.
Outputs Point <External Block>: a MacOS X Rect structure.
Example

See also Rect-to-list

list-to-RGB

Description Returns the specified RGB structure.
Inputs Specifiers-list <list>: the three integers specifying the RGB.
Outputs RGB <External Block>: a MacOS X RGB structure.
See also RGB-to-list

Marten Primitives 20
Point-to-list

Description Returns the list of two coordinates specified by a Point.
Inputs Point <External Block>: a MacOS X Point structure.
Outputs Specifiers-list <list>: the two integers specifying the co-ordinates

of the Point.
See also list-to-Point

Rect-to-list

Description Returns the list of four coordinates specified by a Rect.
Inputs Rect <External Block>: a MacOS X Rect structure.
Outputs Co-ords-list <list>: the four integers specifying the co-ordinates

of the Rect.

RGB-to-list

Description Returns the list of three colour specifiers of a Rect.
Inputs RGB <External Block>: a MacOS X RGB structure.
Outputs Specifiers-list <list>: the three integers specifying the individual

colors of the RGB.
See also list-to-RGB

Marten Primitives 21
Input/Output

answer

Description Displays a dialog with one to three buttons labelled with textual
representations of provided Marten values and returns the value
corresponding to the button that the user clicks. The modal dialog
has a specified textual prompt and 1, 2, or 3 horizontally arranged
buttons. Marten uses textual representations of Button1 to
Button3 if they are not already strings.

Inputs Prompt <string>: a textual prompt to aid the user in making a
choice.
Button1 <any>: any valid Marten data item.
Button2 <any>: any valid Marten data item.
Button3 <any>: any valid Marten data item.

Outputs ButtonClicked <any>: the value of the input parameter
corresponding to the user’s selection.

See also answer-v, ask, select

answer-v

Description Displays a dialog with one to three buttons labelled with textual
representations of provided Marten values and returns the value
corresponding to the button that the user clicks. The modal dialog
has a specified textual prompt and 1, 2, or 3 vertically arranged
buttons. Marten uses textual representations of Button1 to
Button3 if they are not already strings.

Inputs Prompt <string>: a textual prompt to aid the user in making a
decision.
Button1 <any>: any valid Marten data item.
Button2 <any>: any valid Marten data item.
Button3 <any>: any valid Marten data item.

Outputs ButtonClicked <any>: the value of the input corresponding to the
user’s selection.

See also answer, ask, select

Marten Primitives 22
ask

Description Opens a modal dialog prompting a user for input. The dialog has
two buttons (Cancel and OK), an editable area, a textual prompt,
and a default value in the editable area.

Inputs Prompt <string>: a textual prompt to aid the user in providing a
value.
DefaultValue <any>: an initial, default value to be used as input
if the user presses OK without typing a value in the editable area.

Note The DefaultValue parameter cannot contain an External structure
or an instance of a class

Default(s) Prompt = ’Enter value’; DefaultValue = ’’
Outputs Value <any>: Contains the last value entered and displayed.

Canceled? <boolean>: True if the user pressed the Cancel button,
false if they pressed the OK button.

See also answer, answer-v, select

select

Description Opens a modal dialog prompting the user to make a selection from
a list of provided alternatives. The modal dialog has a scrolling
list, two buttons (Select and Cancel), and, optionally, a textual
prompt.

Inputs Strings <list>: the items that are to be displayed in the scroll list.
Prompt <string>: a textual prompt displayed in the dialog.

Outputs SelectedString <string | null>: if the dialog is dismissed with the
Select button and a string was selected, then this parameter
contains the selected string; otherwise it has a value of NULL.

See also answer, answer-v, ask

show

Description Displays output in a modal dialog. The dialog contains a string
obtained by concatenating textual representations of the inputs.

Inputs Item1 <any>: the first of the Marten values in the concatenation
of the textual representations.
Item2... <any>: one terminal for each remaining Marten value to
be displayed.

Note Inputs cannot be instances of classes or Windows types.
See also ask

Marten Primitives 23
Interpreter control
The following primitives are provided for use with the Interpreter:

call Similar to injecting a method name on an operation,
but it provides more flexibility in that it allows you to
call class-based and universals.

compiled? Result is TRUE if your program is compiled, and
FALSE if your program is interpreted.

call

Description Using call is similar to injecting a method name on an operation,
but it provides more flexibility in that it allows you to call class-
based and universals.

Inputs MethodName <String>: The name of the method to call; this can
be class-based (beginning with a / slash or // double-slash), or a
universal (no slash).
Inputs <List>: A list of values to be passed into the method.
Outcount <Integer>: The number of outputs to expect.

Outputs Outputs <List>: The list of outputs produced by the called
method.

Note Since this call functions like an actual call to the method in
question, if the method is not found, the system asks if you want
to create it.
Do not use Outputs on the call primitive if the method you are
calling may terminate or fail. Under those conditions, a method
produces undefined outputs.
If the call generates an execution error (such as when the method
is not defined) in the interpreter, execution will halt on the call
operation itself, with the error message displaying the execution
error. Similarly, if the called method fails, any control placed on
the call operation itself will respond to the failure.

compiled?

Description Result is TRUE if your program is compiled, and FALSE if
your program is interpreted. This primitive can return a boolean
result.

List
The list primitives provide a number of functions for working with lists of all types.
The following primitives are provided:

Marten Primitives 24
(in) Searches a list for a specified item and returns the
index of the first occurrence of the item.

(join) Concatenates two or more lists.

(length) Returns the number of elements in a list.

attach-l Adds elements to the front of a list.

attach-r Adds elements to the end of a list.

detach-l Remove the first n elements of a list.

detach-nth Removes the nth element of a list.

detach-r Removes the last n elements.

find-instance Searches a list for a specified instance.

find-sorted Performs a binary search on a list.

get-nth Returns the nth element of a list.

insert-nth Inserts a new item in a list at a specified position.

make-list Creates a new list and lets you specify values
programmatically.

pack Creates a new list of provided items.

reverse Reverses the order of items in a list.

set-nth Sets the value of the nth element in a list.

set-nth! Sets the value of the nth element in a list, directly
modifying the elements (not copies).

sort Sorts the elements in a list.

split-nth Splits a list into two lists at a specified position.

unpack Returns the first n elements of a list.

(in)

Description Searches a list for a specified item and returns the index of the first
occurrence of the item. Optionally, you can pass an index number
which will be treated as the first element of the search. Note that
a list element is found only if it equals Item in the sense defined
by the = primitive.

Inputs List <list>: the list to be searched.
Item <any>: the value to search for.
StartIndex <integer>: the index of the first item to be checked.

Default(s) StartIndex = 1
Outputs FoundIndex <integer>: the index of the found item or zero (0) if

the item does not occur in the list.
See also (length), (join)

Marten Primitives 25
(join)

Description Concatenates two or more lists.
Inputs List1 <list>: the list whose items are to be the first set of items in

the new list.
List2 <list>: the list whose items are to follow the items of the
List1 items in the new list.
List3 ... <list>: any remaining lists, one per terminal.

Outputs List <list>:
See also (in), (length)

(length)

Description Returns the length (number of elements) of a list.
Inputs List <list>:
Outputs Length <integer>:
See also (in), (join)

attach-l

Description Creates a new list by concatenating one or more provided elements
(Element1...) and an existing list.

Inputs Element1 <any>: the element that is to be the first item in the list.
Element2 ... <any>: the second and subsequent items, one per
terminal.
List <list>: the existing list.

Outputs NewList <list>: the new list.
See also attach-l, attach-r, detach-l, detach-nth, detach-r

Marten Primitives 26
attach-r

Description Creates a new list by concatenating an existing list and one or
more provided elements.

Inputs List <list>: the existing list.
Element1 <any>: the first item to be appended to the list.
Element2 ... <any>: any remaining items to be appended to the
list, one per terminal.

Outputs NewList <list>: the new list.
See also attach-l, detach-l, detach-nth, detach-r

detach-l

Description For N+1 output roots, returns the first N elements of a list and a
list containing the remaining elements.

Inputs InList <list>: a list with at least N elements.
Outputs Element1 <any>: the first element in the list

Element2 ... ElementN <any>: elements 2 - N of the list.
OutList <list>: the remaining elements in the list.

See also attach-l, attach-r, detach-nth, detach-r

detach-nth

Description Returns the Nth element of a list and a new list that results from
removing the Nth element from the original list.

Inputs InList <list>: the original list.
N <integer>: the index of the item to be removed from the list.

Outputs OutList <list>: the new list.
Element <any>: the item removed the original list.

See also attach-l, attach-r, detach-l, detach-r

Marten Primitives 27
detach-r

Description For N+1 output roots, returns the last N elements of a list and a
new list containing the remaining elements of the original list.

Inputs InList <list>: a list containing at least N elements.
Outputs OutList <list>: a new list containing the remaining elements of

the original list.
Element1 <any>:
Element2 ... ElementN <any>:

See also attach-l, attach-r, detach-l, detach-nth

find-instance

Description Given a list of Instances, returns the index of the first instance
containing a specified attribute with a provided value.Optionally,
you can provide an index number to use as the starting point of the
search.

Inputs List <list>: a list of instances.
AttributeName <string>: the name of the attribute to search.
Value <any>: the value of the attribute to search for.
StartIndex <integer>: the index within the list at which the search
is to start.

Default(s) StartIndex = 1
Outputs FoundIndex <integer>: if the instance was found, this parameter

contains the index of the instance; otherwise it contains a value of
zero (0).
Instance <<instance>> | <null>: if the instance was found, this
parameter contains the instance; otherwise it has a value of NULL.

See also find-sorted

Marten Primitives 28
find-sorted

Description Uses a binary search to find an item in a SORTED list of numbers,
strings, or instances. Using find-sorted, as opposed to find-
instance, is faster because it uses a binary search.

Inputs List <list>: the list to be searched.
Item <string | number>: the value to be searched for.
AttributeName <string>: if the list is a list of instances, this
parameter passes the name of the attribute to be searched for the
given value.

Outputs Found <boolean>:
Index <integer>: if the Found parameter has a value of TRUE, this
parameter contains the index of the item in the list that had the
specified value. If the Found parameter has a value of FALSE, this
parameter stores the index where the specified value can be
inserted.

See also find-instance

get-nth

Description Given a list, returns an element specified by index. This primitive
can also return elements from nested lists by passing it additional
index numbers.

Inputs List <list>: the list to be searched.
N1 <integer>: for a simple list, the index of the element to be
returned; for a list of lists, the index of the nested list.
N2 ... <integer>: the index of the element within a nested list or
the index of another nested list. The final terminal must be the
index of the element to be returned in the deepest nested list.

Outputs Element <any>:
See also insert-nth, set-nth, set-nth!, split-nth

Marten Primitives 29
insert-nth

Description Creates a new list by inserting a provided element at a specified
position in an existing list.

Inputs OldList <list>: the existing list.
Element <any>: the item to be added to the existing list.
Index <integer>: the position at which the item is to be placed in
the new list.

Outputs Element <list>: the new list.
See also get-nth, set-nth, set-nth!, split-nth

make-list

Description Creates a list of a specified length. The initial values of items in
the list can be all NULLs, all identical values, or you can provide
an initial value for the first item in the list and have subsequent
item values based on addition of a provided value.

Inputs Length <integer>: the number of items in the list.
Start <any>: the value of the first item in the list and if the Step
parameter is not provided, the value of all items in the list. If the
Start parameter is not provided, all items of the list are created
with an initial value of NULL.
Step <number>: the number to add to the value of a list item to
obtain the value of the next item in the list.

Default(s) Start = NULL
Outputs List <list>: the new list.
See also pack

pack

Description Creates a list of list of one or more elements.
Inputs Element1 <any>: the value of the first element in the list.

Element2... <any>: the value of subsequent items in the list, one
per terminal.

Outputs List <list>: the resulting list.
See also make-list, unpack

Marten Primitives 30
reverse

Description Creates a new list by reversing the order of items in an existing list.
Inputs InList <list>: the existing list.
Outputs OutList <list>: the new list.

set-nth

Description Creates a new list by changing the value of a list item, specified by
index, in an existing list. This primitive can be used to change
values in nested lists by providing additional indices.

Inputs InList <list>:
Item <any>: the new value of the specified list item.
N1 <integer>: for a simple list, the index of the element to be
modified; for a list of lists, the index of the nested list.
N2 ... <integer>: the index of the element within a nested list or
the index of another nested list. The final terminal must be the
index of the element to be given a new value in the deepest nested
list.

Outputs OutList <list>: the resulting list.
See also get-nth, insert-nth, split-nth

set-nth!

Description Changes the value of a list item, specified by index. This primitive
can be used to change values in nested lists by providing
additional indices.

Inputs Item <any>: the new value of the specified list item.
N1 <integer>: for a simple list, the index of the element to be
modified; for a list of lists, the index of the nested list.
N2 ... <integer>: the index of the element within a nested list or
the index of another nested list. The final terminal must be the
index of the element to be given a new value in the deepest nested
list.

Outputs List <list>:
Side effects This primitive should be used with care, as it modifies its input

data directly, rather than modifying copies of that input data. This
can affect the results of other operations which independently

Marten Primitives 31
reference the same data. It may be important, therefore, to use
synchros to ensure desired results.

See also get-nth, insert-nth, set-nth, split-nth

sort

Description Performs a simple sort on a list of numbers or strings, or sorts a list
of instances on the value of a specified attribute.

Inputs InList <list>: the existing list.
Duplicate <boolean>: if TRUE, items with identical values are
not duplicated in the sorted list. In the case of a list of instances,
if this parameter has a value of TRUE, instances with identical
attribute values are not duplicated in the sorted list.
AttributeName <string>: this parameter can only be provided
when the InList parameter contains a list of instances. It specifies
the name of the attribute that the instances are to be sorted on.
CheckAllInstances <boolean>: if all instances are of the same
class, pass a value of TRUE with this parameter since it indicates
that the specified attribute is at the same location in all instances.

Outputs OutList <list>: the sorted list.

split-nth

Description Splits an existing list into two new lists; the first list consisting of
the first N elements of the original list and the second list
consisting of the remaining elements of the original list.

Inputs List <list>: the existing list.
N <integer>: the number of items to take from the existing list to
create the first of the two new lists.

Outputs Prefix <list>: the list consisting of the first N elements of the
existing list.
Rest <list>: the list consisting of the remaining elements of the
existing list.

See also get-nth, insert-nth, set-nth, set-nth!

Marten Primitives 32
unpack

Description Given N output roots, returns the first N elements of a list. The list
must contain at least N elements.

Inputs List <list>: the original list.
Outputs Element1 <any>: the first element in the list.

Element2 ... ElementN <any>: elements 2 - N of the list.
Example

p

See also make-list, pack

Logical/Relational
The Logical/Relational primitives allow you to perform standard value comparisons.
The following primitives are provided:

<

Description Succeeds if the first parameter is less than the second parameter.
Inputs Item1 <string | number>

Item2 <string | number>
Outputs <boolean>: an output root can be added to this primitive if further

processing of its result is required.
Note Datatypes of the inputs MUST match.
Equivalent lt
See also <=, =, >, >=

< <= = > >=
and choose equals gt gte

lt lte not or xor

Marten Primitives 33
<=

Description Succeeds if the first parameter is less than or equal to the second
parameter.

Inputs Item1 <string | number>
Item2 <string | number>

Outputs <boolean>: an output root can be added to this primitive if further
processing of its result is required.

Note Datatypes of the inputs MUST match.
Equivalent lte
See also <, =, >, >=

=

Description If the two parameters are instances of classes, this primitive
succeeds if both parameters are located at the same address. If the
two parameters are external structures, this primitive succeeds if
the value fields of the two parameters are equal. Otherwise, this
primitive succeeds if the two parameters are equal, or in the case
of lists, all corresponding components of the two lists are equal.

Inputs Item1 <any>
Item2 <any>

Outputs <boolean>: an output root can be added to this primitive if further
processing of its result is required.

Equivalent equals
See also <, <=, >, >=

>

Description Succeeds if the first parameter is greater than the second
parameter.

Inputs Item1 <string | number>
Item 2 <string | number>

Outputs <boolean>: an output root can be added to this primitive if further
processing of its result is required.

Note Datatypes of the inputs MUST match.
Equivalent gt
See also <, <=, =, >=

Marten Primitives 34
>=

Description Succeeds if the first parameter is greater than or equal to the
second parameter.

Inputs Item1 <string | number>
Item2 <string | number>

Outputs <boolean>: an output root can be added to this primitive if further
processing of its result is required.

Note Datatypes of the inputs MUST match.
Equivalent gte
See also <, <=, =, >

and

Description Performs a logical AND on two or more boolean values.
Inputs Boolean1 <boolean>

Boolean2 <boolean>
Boolean3... <boolean>

Outputs <boolean>: an output root can be added to this primitive if further
processing of its result is required.

See also or, xor, not

choose

Description Returns one of two values based on the value of a supplied
criterion.

Inputs Criterion <boolean>: the value that determines whether the
TrueChoice parameter or FalseChoice parameter is returned by
this primitive.
TrueChoice <any>: the value to be returned if the Criterion
parameter is TRUE.
FalseChoice <any>: the value to be returned if the Criterion
parameter is FALSE.

Outputs Choice <any>:

Marten Primitives 35
equals

Description If the two parameters are instances of classes, this primitive
succeeds if both parameters are located at the same address. If the
two parameters are external structures, this primitive succeeds if
the value fields of the two parameters are equal. Otherwise, this
primitive succeeds if the two parameters are equal, or in the case
of lists, all corresponding components of the two lists are equal.

Inputs Item1 <any>
Item2 <any>

Outputs <boolean>: an output root can be added to this primitive if further
processing of its result is required.

Equivalent =
See also <, <=, >, >=

gt

Description Succeeds if the first parameter is greater than the second
parameter.

Inputs Item1 <string | number>
Item 2 <string | number>

Outputs <boolean>: an output root can be added to this primitive if further
processing of its result is required.

Note Datatypes of the inputs MUST match.
Equivalent >
See also <, <=, =, >=

gte

Description Succeeds if the first parameter is greater than or equal to the
second parameter.

Inputs Item1 <string | number>
Item2 <string | number>

Outputs <boolean>: an output root can be added to this primitive if further
processing of its result is required.

Note Datatypes of the inputs MUST match.
Equivalent >=
See also <, <=, =, >

Marten Primitives 36
lt

Description Succeeds if the first parameter is less than the second parameter.
Inputs Item1 <string | number>

Item2 <string | number>
Outputs <boolean>: an output root can be added to this primitive if further

processing of its result is required.
Note Datatypes of the inputs MUST match.
Equivalent <
See also <=, =, >, >=

lte

Description Succeeds if the first parameter is less than or equal to the second
parameter.

Inputs Item1 <string | number>
Item2 <string | number>

Outputs <boolean>: an output root can be added to this primitive if further
processing of its result is required.

Note Datatypes of the inputs MUST match.
Equivalent <=
See also <, =, >, >=

not

Description Returns the logical negation of a boolean value.
Inputs Boolean <boolean>
Outputs Result <boolean>
See also and, or, xor

Marten Primitives 37
or

Description Performs a logical OR against two or more boolean values.
Inputs Boolean1 <boolean>

Boolean2 <boolean>
Boolean3 <boolean>

Outputs <boolean>: an output root can be added to this primitive if further
processing of its result is required.

See also and, xor, not

xor

Description Performs an XOR (exclusive OR) against two boolean values.
Inputs Boolean1 <boolean>

Boolean2 <boolean>
Outputs <boolean>: an output root can be added to this primitive if further

processing of its result is required.
See also and, or, not

~=

Description Succeeds if the two parameters are not equal. This is the logical
negation of the value that would be returned by the = primitive.

Inputs Item1 <any>
Item2 <any>

Outputs <boolean>: an output root can be added to this primitive if further
processing of the result is required.

Math
The following math primitives are provided:

* ** + ++ +1
- - - -1 abs acos

asin atan cos div idiv
max min pi power rand

rand-seed round round-down round-up sin
sqrt tan trunc

Marten Primitives 38
*

Description Returns the product of two or more numbers.
Inputs Number1 <number>:

Number2 <number>:
Number3 ...<number>:

Outputs Product <number>:
See also +, -, div, ++, - -, **, idiv, +1, -1

**

Description Returns the product of two or more integers.
Inputs Integer1 <integer>:

Integer2 <integer>:
Integer3 ... <integer>:

Outputs Product <integer>:
See also +, -, div, ++, - -, *, idiv, +1, -1

+

Description Returns the sum of two or more numbers.
Inputs Number1 <number>:

Number2 <number>:
Number3 ...<number>:

Outputs Sum <number>:
See also -, div, ++, - -, *, **, idiv, +1, -1

Marten Primitives 39
++

Description Returns the sum of two or more integers.
Inputs Integer1 <integer>:

Integer2 <integer>:
Integer3 ... <integer>:

Outputs Sum <integer>:
See also +, -, div, - -, *, **, idiv, +1, -1

+1

Description Adds 1 to a provided number.
Inputs Number <number>:
Outputs Result <number>:
See also +, -, div, ++, - -, *, **, idiv, -1

-

Description Subtracts the second parameter from the first parameter or negates
the value of a single provided parameter.

Inputs Number1 <number>:
Number2 <number>:

Default(s) Number1 = 0
Outputs Result <number>:
See also +, div, ++, - -, *, **, idiv, +1, -1

Marten Primitives 40
- -

Description Subtracts the second integer parameter from the first or negates the
value of a single provided integer.

Inputs Integer1 <integer>:
Integer2 <integer>:
Integer3 ... <integer>:

Default(s) Integer1 = 0
Outputs Result <integer>:
See also +, -, div, ++, *, **, idiv, +1, -1

-1

Description Subtracts 1 from a number.
Inputs Number <number>:
Outputs Result <number>:
See also +, -, div, ++, - -, *, **, idiv, +1

abs

Description Returns the absolute value of a number.
Inputs Number <number>:
Outputs Result <number>:

acos

Description Angle is arccosine (Cosine) expressed in radians.
Inputs Cosine <number>:
Outputs Angle <number>: the angle, in radians.
See also sin, cos, tan, asin, atan

Marten Primitives 41
asin

Description Angle is arcsine (Sine) expressed in radians.
Inputs Size <number>:
Outputs Angle <number>: the angle, in radians.
See also acos, sin, cos, tan, atan

atan

Description Angle is arctangent (Tangent) expressed in radians.
Inputs Tangent <number>:
Outputs Angle <number>: the angle, in radians.
See also acos, sin, cos, tan, asin

cos

Description Cosine is cosine (Angle).
Outputs Angle <number>: the angle, in radians.

Cosine <number>:
See also acos, sin, tan, asin, atan

div

Description If two parameters are provided, this primitive divides the first
parameter by the second and returns the result. If a single
parameter is provided, this primitive returns its reciprocal.

Inputs Dividend <number>:
Divisor <number>:

Default(s) Dividend = 1
Outputs Quotient <number>:
See also +, -, ++, - -, *, **, idiv, +1, -1

Marten Primitives 42
idiv

Description Performs integer division. It returns the quotient and remainder
resulting from dividing the first parameter by the second.

Inputs Dividend <integer>:
Divisor <integer>:

Default(s) Dividend = 1
Outputs Quotient <integer>:

Remainder <integer>:
See also +, -, div, ++, - -, *, **, +1, -1

max

Description Returns the maximum of two or more numbers.
Inputs Number1 <number>:

Number2 <number>:
Number3 ...<number>:

Outputs Max <number>:
See also min

min

Description Returns the minimum of two or more numbers.
Inputs Number1 <number>:

Number2 <number>:
Number3 ...<number>:

Outputs Min <number>:
See also max

pi

Description Returns the value of pi (3.1415926...).
Outputs Pi <real>:

Marten Primitives 43
power

Description Calculates the value of a number to a provided exponent. If both
parameters are zero (0), it returns 1.

Inputs Number <number>:
Exponent <number>:

Outputs Result <number>:
See also sqrt

rand

Description Generates a random integer between and including 0 and (2^31) -
1.

Outputs RandNum <integer>:
See also rand-seed

rand-seed

Description Sets the seed for the random-number generator to the integral part
of Seed (1 to (2^31) - 1).

Inputs Seed <number>:
See also rand

round

Description Returns the number closest to a provided number, according to a
specified precision. Positive and negative values for the precision
parameter dictate the number of decimal places to the right and left
of the decimal point, respectively. If the precision parameter is not
provided, or is 0, the result is the integer closest to the provided
number.

Inputs Number <number>:
Precision <integer>:

Outputs Result <number>:
Note If two values are equally near to the provided number, the round

primitive uses the Apple SANE library convention of rounding to

Marten Primitives 44
the even value. For instance, 12.5 rounds to 12, and 13.5 rounds
to 14.
Rounding to a given number of decimal places does not
necessarily mean that the floating point representation of that
number has that number of decimal places: it may have more. The
number .95 is actually .9499999999999999999, for example. Use
the format primitive to store such numbers as strings with the
desired number of decimal places.

See also trunc, round-down, round-up

round-down

Description Returns the nearest number less than or equal to the provided
number according to the provided precision. Positive and negative
values for the precision parameter dictate the number of decimal
places to the right and left of the decimal point, respectively.

Inputs Number <number>:
Precision <integer>:

Default(s) Precision = 0 (return an integer).
Outputs Result <number>:
See also trunc, round, round-up

round-up

Description Returns the nearest number greater than or equal to a provided
number, according to a specified precision. Positive and negative
values for the precision parameter dictate the number of decimal
places to the right and left of the decimal point, respectively. If the
precision parameter is not given, or is 0, the round-up primitive
returns the nearest integer greater than (or equal to) the provided
number.

Inputs Number <number>:
Precision <integer>:

Outputs Result <number>:
See also trunc, round, round-down

Marten Primitives 45
sin

Description Sine is sine (Angle).
Outputs Angle <number>: the angle, in radians.

Sine <number>:
See also acos, cos, tan, asin, atan

sqrt

Description Returns the square root of a number.
Inputs Number <number>:
Outputs SquareRoot <number>:
See also power

tan

Description Tangent is tangent (Angle).
Outputs Angle <number>: the angle, in radians.

Tangent <number>:
See also acos, sin, cos, asin, atan

trunc

Description Returns the integer and fraction components of a provided
number.

Inputs Number <number>:
Outputs Integer <number>:

Fraction <real>:
See also round, round-down, round-up

Memory
The following primitives allow you to work directly with memory:

Marten Primitives 46
address-to-object Returns the Marten object at the specified address.

from-pointer Casts a pointer as an integer.

get-integer Returns an integer from a specified location.

get-real Returns a real number of a specified length from a
specified location.

get-text Returns a string of a specified length from a specified
location.

object-to-address Returns the address of a Marten object.

put-integer Places an integer into a specified memory location.

put-real Places a real number into a specified memory
location.

put-text Places a string into a specified memory location.

string-address Returns the address of the first character in a string.

to-pointer Casts an integer as a pointer.

address-to-object

Description Returns the Marten object at the specified address. The address
must have been generated by a call to object-to-address on the
same machine (same address space), and you must be certain that
the object still exists at that address.

Inputs Address <integer>:
Outputs Object <any>:
See also object-to-address

from-pointer

Description If the provided pointer is the address of a block of memory, then
this primitive returns that address represented as an integer. In
effect, it performs a cast of the pointer type to an integer.

Inputs Pointer <external@>:
Outputs Address <integer>:
Example If Pointer = ABlock@16#00211A00, Address = 16#00211A00.
See also to-pointer

Marten Primitives 47
get-integer

Description Returns an integer of a specified size from a particular location
within a memory block.

Inputs Buffer <ABlock> | <ABlock@> | <ABlock@@ >| <integer>:
Offset <integer>: the offset, in bytes, at which to start reading the
integer.
Size <integer>: the size, in bytes, of the integer. Acceptable values
are:

� 1
� 2
� 4

Outputs Buffer <ABlock> | <ABlock@> | <ABlock@@ >| <integer>:
NextOffset <integer>: the value of the Offset parameter added to
the value of the Size parameter.
Value <integer>: the integer read.

See also put-integer, get-real, get-text

get-real

Description Returns a real number of a specified length from a specified
location within a memory block.

Inputs Buffer <ABlock> | <ABlock@> | <ABlock@@ >| <integer>:
Offset <integer>: the position within the memory block at which
to begin reading the real number.
Size <integer>: the size, in bytes, (4, 8, or 10) of the real number
to be read. Acceptable values are:

� 4
� 8
� 10

Outputs Buffer <ABlock> | <ABlock@> | <ABlock@@ >| <integer>:
NextOffset <integer>: the value of the Offset parameter plus that
of the Size parameter.
Value <real>: the real number read.

See also put-real, get-integer, get-text

Marten Primitives 48
get-text

Description Returns a string of a specified size from a particular location
within a memory block.

Inputs Buffer <ABlock> | <ABlock@> | <ABlock@@ >| <integer>:
Offset <integer>: the offset within the memory block at which to
start reading.
Size <integer>: must be greater than or equal to 0 and less than or
equal to 65535 when using the interpreter and can be up to
4294967295 bytes when using the compiler).

Outputs Buffer <ABlock> | <ABlock@> | <ABlock@@ >| <integer>:
NextOffset <integer>: the value of the Offset parameter plus that
of the Size parameter.
String <string>:

See also put-text, get-integer, get-real

object-to-address

Description Returns the address of any Marten object.
Inputs Object <any>:
Outputs Address <integer>:
See also address-to-object

put-integer

Description Converts a provided integer into an integer of a specified size and
places it at a specified location in a memory block.

Inputs Buffer <ABlock> | <ABlock@> | <ABlock@@ >| <integer>:
Offset <integer>: the offset within the memory block at which to
write the integer.
Size <integer>: the size, in bytes, of the integer. Acceptable values
are:

Marten Primitives 49
� 1
� 2
� 4

Value <integer>:
Outputs Buffer <ABlock> | <ABlock@> | <ABlock@@ >| <integer>:

NextOffset <integer>: the value of the Offset parameter plus the
value of the Size parameter.

See also get-integer, put-real, put-text

put-real

Description Converts a real into a floating point value of a specified size and
places it in a particular location in a memory block.

Inputs Buffer <ABlock> | <ABlock@> | <ABlock@@ >| <integer>:
Offset <integer>: the position in the memory block at which to
write the floating point value.
Size <integer>: the size, in bytes, of the floating point value.
Acceptable values are:

� 4
� 8
� 10

Value <real> or <integer>:
Outputs Buffer <ABlock> | <ABlock@> | <ABlock@@ >| <integer>:

NextOffset <integer>: the value of the Offset parameter plus the
value of the Size parameter.

See also get-real, put-integer, put-text

Marten Primitives 50
put-text

Description Writes a specified number of bytes from a string to a particular
position in a memory block.

Inputs Buffer <ABlock> | <ABlock@> | <ABlock@@ >| <integer>:
Offset <integer>:
Size <integer>: must be greater than or equal to 0 and less than or
equal to 65535 in the interpreter or 4294967295 bytes in the
compiler.
String <string>:

Outputs Buffer <ABlock> | <ABlock@> | <ABlock@@ >| <integer>:
NextOffset <integer>: the value of the Offset parameter plus that
of the Size parameter.

See also get-text, put-integer, put-real

string-address

Description Returns the address of the first character in a string. The string
should be locked whenever an address is taken or used.

Inputs aString <string>:
Outputs Address <ABlock@>:

to-pointer

Description If Address is the integer address of a block in memory, then
Pointer is that same address represented as a generic pointer type
in Marten. In effect, it performs a cast of the integer type to a
pointer.

Inputs Address <integer>:
Outputs Pointer <ABlock@>:
Example ExampleIf Address = 16#00211A00, Pointer =

ABlock@16#00211A00.
See also from-pointer

String
The following primitives are provided for working with strings:

Marten Primitives 51
byte-length Returns the length of a string in bytes

from-ascii Returns the character represented by a specified
ASCII code.

from-string Returns the textual value of a provided string.

"in" Returns the location of a substring within a provided
string.

integer-to-string Returns the string representation of an integer.

"join" Concatenates two or more strings.

"length" Returns the number of characters in a string.

middle Returns a substring of a specified string.

prefix Returns two strings, the first n characters in one string
and the remaining characters in the second string.

string-to-integer Returns the integer representation of a provided
string.

suffix Returns two substrings, the last n characters in one
string and the remaining characters in the second
string.

to-ascii Returns the ASCII integer representation of a
provided string.

to-string Returns the string representation of a provided
Marten object.

byte-length

Description Returns the length of a specified string in bytes rather than
characters. Use this primitive to return the length of a specified
string in bytes.

Inputs String <string>:
Outputs Length <integer>: length of the string, in bytes.

from-ascii

Description Returns the character representation of one or more ASCII codes.
Inputs CharCodes <integer | list of integers>: charCode or

charCodeList.
Outputs String <string>: a string containing the characters represented by

the provided ASCII codes.
Example If CharCodes = (72 101 108 108 111), then String = "Hello". If

CharCodes = 72, String = "H".
See also from-string, to-ascii, to-string

Marten Primitives 52
from-string

Description Returns the value textually represented by String. Type cannot be
a class or External structure.

Note In producing output, this primitive follows Marten rules for
unparsing. For details on data types, refer to the Marten User
Guide.

Inputs String <string>:
Outputs Data <any*> | Point | Rect | RGBType
See also from-ascii, to-ascii, to-string

"in"

Description Returns the location of a substring in a provided string.
Inputs String <string>: the string in which to search.

SubString <string>: the substring to search for.
StartIndex <integer>: the index of the character in the String
parameter at which to start the search. This parameter must be a
positive number.

Default(s) StartIndex = 1
Outputs FoundIndex <integer>: if the substring was found, the index in

the string of the first character of the substring; zero (0) otherwise.
Note If SubString is an empty string, FoundIndex returns 1.
See also "length", "join"

integer-to-string

Description Returns the four character string representation of an integer.
Inputs Integer <integer>:
Outputs String <string>:
Example ExampleIf Integer = 16#54455854 ("TEXT"), then String =

"TEXT".
See also string-to-integer

Marten Primitives 53
"join"

Description Concatenates two or more strings.
Inputs String1 <string>:

String2 <string>:
String3 ... <string>:

Outputs Result <string>:
See also "in", "length"

"length"

Description Returns the number of characters in a string.
Inputs String <string>:
Outputs Length <integer>:
See also "in", "join"

middle

Description Returns a substring of a specified number of characters from a
provided string beginning at a specified position in the string.

Inputs String <string>:
N <integer>: the number of characters to return.
Index <integer>: the index within the String parameter
corresponding to the first character of the substring.

Outputs OutString <string>
See also prefix, suffix, "in"

Marten Primitives 54
prefix

Description Returns two substrings; the first consisting of the first N characters
of the string and the second consisting of the remaining characters.

Inputs InString <string>:
N <integer>:

Outputs OutString <string>:
Suffix <string>:

Example The following example extracts the first and last names; the space
character separates the two names. The second root of the prefix
primitive returns the last name, while suffix is used to strip the
trailing blank from the first name.

See also middle, suffix, "in"

string-to-integer

Description Returns the integer representation of a four character string.
Inputs String <string>:
Outputs Integer <integer>:
Example ExampleIf String = "TEXT", then Integer = 16#54455854 (

"TEXT").
See also integer-to-string

Marten Primitives 55
suffix

Description Returns two substrings, one consisting of the last N characters of
the provided string, the other consisting of the remaining
characters.

Inputs InString <string>:
N <integer>:

Outputs Prefix <string>: the initial characters of the Instring parameter;
those not included in the Suffix parameter.
Suffix <string>: the last N characters of the Instring parameter.

See also middle, prefix, "in"

to-ascii

Description Returns the list of integers that are the ASCII representations of
the characters in a provided string.

Inputs String <string>:
Outputs CharCodeList <list>:
Example ExampleIf String = "Hello", then charCodeList = (72 101 108

108 111).
See also from-ascii, from-string, to-string

to-string

Description Returns the textual representation of provided data.
Inputs Data <any*> | Point | Rect | RGBType: Input type cannot be a

class or External Structure.
Outputs String <string>: the textual representation of the provided data.

This parameter has a value of NULL if the provided data cannot
be represented textually; instances and structures other than Point,
Rect, and RGBType.

Note This primitive follows Marten’s unparsing rules for working with
datatypes. For details, refer to the Marten User Guide.

See also from-ascii, from-string, to-ascii

System
The following system primitives are provided:

Marten Primitives 56
ancestors Returns the names of all ancestors of a provided class.

attributes Returns the names of all attributes of a given class.

children Returns the names of all immediate subclasses of a
given class.

classes Returns the names of all classes in a project.

descendants Returns the names of all subclasses of a given class.

methods Returns a list of methods of a given type.

persistents Returns the list of all persistents in a project.

ancestors

Description Returns the names of all ancestor classes of a class specified by
Instance or ClassName.

Inputs Class <instance> | <string>: the class name or an instance of the
class.

Outputs Ancestors <list>: the list of names of ancestor classes. The list is
ordered such that the first name in the list is the immediate
superclass of the input class. If the input class is a top-level class,
the list is empty.

See also children, descendants

attributes

Description Returns the names of all instance attributess and class attributes of
a specified class.

Inputs Class <instance> | <string>: the name of the class or an instance
of the class for which class and instance attribute names are to be
returned.

Outputs ClassAttrs <list;>: a list of the names of class attributes in the
specified class.
InstanceAttrs <list>: a list of the names of instance attributes in
the specified class.

See also classes, methods, persistents

Marten Primitives 57
children

Description Returns the names of all classes that inherit DIRECTLY from a
specified class.

Inputs Class <instance> | <string>: the name of the class or an instance
of the class for which the list of child classes is to be returned.

Outputs Children <list>: a sorted list of class names.
Note Contrast the purpose of this primitive with that of the descendants

primitive.
See also ancestors, descendants

classes

Description Returns the names of all classes in a project.
Outputs Classes <list>: a list of the names of all classes.
See also attributes, methods, persistents

descendants

Description Return the names of all classes that are descendants of a specified
class.

Inputs Class <instance> | <string>: the name of the class or an instance
of the class for which the names of descendant classes are to be
returned.

Outputs Descendants <list of string>: a sorted list of the names of all
classes that are descendants of the specified class.

Note Contrast the purpose of this primitive with that of the children
primitive.

See also ancestors, children

Marten Primitives 58
methods

Description If the input is an Instance or aClass name, then Methods,
GetMethods, and SetMethods are respectively lists of the names of
simple or initialization methods, get methods, and set methods in
the class specified by Instance or ClassName. If input is None,
Methods is the list of names of Universal methods, and
GetMethods and SetMethods are both ().

Inputs MethodType <instance> | <string> | none
Outputs Methods <list>:

GetMethods <list>:
SetMethods <list>:

Compiler No distinction is made between Universal methods and
primitives. If no input parameter is provided, this primitive
returns a list of names of Universal methods and primitives.

See also attributes, classes, persistents

persistents

Description Returns the names of all persistents in the project.
Outputs Persistents <list of strings>: a list of the names of all persistents.
See also attributes, classes, methods

Type
The following type primitives are provided:

boolean? Succeeds if the provided data is boolean.

external-type Returns the name of a referenced External structure.

instance? Succeeds if the provided data is an instance.

integer? Succeeds if the provided data is an integer.

list? Succeeds if the provided data is a list.

number? Succeeds if the provided data is an integer to a real
number.

real? Succeeds if the provided data is a real number.

string? Succeeds if the provided data is string.

type Returns the type of a provided Marten object.

Marten Primitives 59
boolean?

Description Succeeds if the provided data is boolean, (TRUE or FALSE).
Inputs Item <any>: any Marten data item.
Outputs boolean
See also instance?, integer?, list?, external-type, number?, real?, string?,

type

external-type

Description StructName is the name of the external type whose structure,
pointer, or handle is referred to by Data. A list of possible external
type names can be found in the Info window under External
Structures.

Inputs Data <external@@> | <external@> | <external>:
Outputs StructName <string>:
See also boolean?, instance?, integer?, list?, number?, real?, string?, type

instance?

Description Succeeds if the provided data is an instance of a class.
Inputs Item <any>: any Marten data item.
Outputs boolean
See also boolean?, integer?, list?, external-type, number?, real?, string?,

type

integer?

Description Succeeds if the provided data is an integer.
Inputs Item <any>: any Marten data item.
Outputs boolean
See also boolean?, instance?, list?, external-type, number?, real?, string?,

type

Marten Primitives 60
list?

Description Succeeds if the provided data is a list.
Inputs Item <any>: any Marten data item.
Outputs boolean
See also boolean?, instance?, integer?, external-type, number?, real?,

string?, type

number?

Description Succeeds if the provided data is areal or an integer.
Inputs Item <any>: any Marten data item.
Outputs boolean
See also boolean?, instance?, integer?, list?, external-type, real?, string?,

type

real?

Description Succeeds if the provided data is a real number.
Inputs Item <any>: any Marten data item.
Outputs boolean
See also boolean?, instance?, integer?, list?, external-type, number?,

string?, type

string?

Description Succeeds if the provided data is a string.
Inputs Item <any>: any Marten data item.
Outputs boolean
See also boolean?, instance?, integer?, list?, external-type, number?, real?,

type

Marten Primitives 61
type

Description Returns the type of the provided Marten data.
Inputs Item <any>: any Marten data item.
Outputs Type <string>: one of the following: boolean, integer, list,

external, none, null, real, string or undefined.
See also boolean?, instance?, integer?, list?, external-type, number?, real?,

string?

Index
Symbols
"in" primitive 60
"join" primitive 61
"length" primitive 61
(in) primitive 32
(join) primitive 33
(length) primitive 33
* primitive 46
** primitive 46
+ primitive 46
++ primitive 47
+1 primitive 47
< primitive> 40, 44
<= primitive> 41, 44
= primitive 41, 43
> primitive 41, 43
>= primitive 42, 43

Numerics
-1 primitive 48, 48
32-bit integers 13

A
abs primitive 48
acos primitive 48
addresses

converting to pointers 58
obtaining from pointers 54
of instance 56
of strings 58

address-to-object primitive 54

ancestors primitive 64
and primitive 42
AND, bitwise 13
angles

primitives for use with 45
answer primitive 29
answer-v primitive 29
arccosine 48
arcsine 49
arctangent 49
ASCII

converting characters from 59
representation of strings 63

asin primitive 49
ask primitive 30
atan primitive 49
attach-l primitive 33
attach-r primitive 34
attribute

providing values programmatically 21
attributes

list of instance values 21
list of, in class 64

attributes primitive 64

B
binary search 36
bit arithmetic primitives 13
Bit primitives

library containing 5
bit-and primitive 13

bit-not primitive 14
bit-or primitive 14
bit-shift-l primitive 14
bit-shift-r primitive 15
bit-testing 15
bit-xor primitive 15
boolean? primitive 67
booleans

testing data for 67, 69
byte-length primitive 59

C
Callbacks primitives

library containing 5
children primitive 65
classes

list of ancestors 64
list of descendants 65
list of immediate children 65
list of methods in 66
list of, in project 65

classes primitive 65
close-file primitive 22
complement, bitwise 14
copy primitive 20
cos primitive 49
create-object-file primitive 23
create-text-file primitive 23

D
Data primitives

library containing 5
decrement 48
delete-file primitive 23
descendants primitive 65
detach-l primitive 34
detach-nth primitive 34
detach-r primitive 35
dialog boxes

displaying programmatically 30
opening programmatically 30

div primitive 49

E
equals primitive 41, 43
exclusive or primitive 45
EXCLUSIVE-OR operation, integers 15
exponents 51
externals

testing data for 69
external-type primitive 67

F
File primitives

library containing 5
files

buffering, External Block 25
closing 22
creating 23
creating. text 23
deleting 23
open dialog 23
opening 24
primitives for working with 22
reading objects from 25
reading text from 25
save dialog 24
writing objects to 25
writing text to 26

find-instance primitive 35
find-sorted primitive 36
floating point

writing to memory 57
folders

Library 6
from-ascii primitive 59
from-pointer primitive 54
from-string primitive 60

G
get-file primitive 23
get-integer primitive 55
get-nth primitive 11, 36
get-real primitive 55
get-text primitive 56

Graphics primitives 26
library containing 5

greater than primitive 41, 43
greater than/equal to primitive 42, 43
gt primitive 43
gte primitive 43

I
idiv primitive 50
increment 47
Input/Output primitives

library containing 5
inputs

prompting programmatically 30
insert-nth primitive 37
instance attributes

list of, in class 64
instance? primitive 67
instances

copying 20
creating from list 21
memory address of 56
obtaining by address 54
returning class name/attributes 21
searching in lists 35
testing data for 67

inst-to-list primitive 21
integer? primitive 67
integers

addition 47
bit arithmetic 13
bitwise complement 14
bitwise OR 14
division 50
EXCLUSIVE_OR 15
from reals 53
multiplication 46
obtaining from memory 55
representation of string 62
shift left 14
shifting right 15
string representation 60
subtraction 48

testing against mask 15
testing bit positions 15
testing bits against mask 16
testing data for 67, 69
writing to memory 56

integers, AND operation 13
integer-to-string primitive 60
Interpreter control primitives

library containing 5

L
left shift, integers 14
less than primitive 40, 44
less than/equal to primitive 41, 44
libraries

content 5
introduced 5
loading 5
location 5
packaged with Marten 5
primitive categories contained 5

Library folder 6
List primitives

library containing 5
list? primitive 68
lists

accessing elements by index 11, 36
accessing first elements of 40
binary search in 36
changing values in 38, 38
concatenating elements to end 34
concatenating elements to start 33
copying 20
creating/populating programmatically 37,
37
inserting elements 37
joining two 33
returning first n elements 34
returning last n elements 35
returning length 33
returning nth element 34
reversing 38
searching elements by instance 35

searching for item in 32
sorting 39
splitting into two 39
testing data for 68, 69

list-to-inst primitive 21
list-to-point primitive 27
list-to-rect primitive 27
list-to-RGB primitive 27
logarithm primitives 45
Logical/Relational primitives

library containing 5
lt primitive 44
lte primitive 44

M
make-list primitive 37
mask, testing integers against 15
Math primitives

library containing 5
max primitive 50
memory

address to pointer conversion 58
locating instances by address 54
obtaining integers from 55
obtaining reals from 55
pointer/address conversion 54
returning text from 56
string address 58
writing integers to 56
writing real/floating point to 57
writing text to 58

Memory primitives
library containing 5

methods
list of, in a class 66

methods primitive 66
middle primitive 61
min primitive 50, 50
multiplication

primitives 45

N
names

class, from instance 21
NONE

testing data for 69
Not operation, bits 14
not primitive 44
NULL

testing data for 69
number? primitive 68
numbers

absolute value 48
addition 46
division 49
incrementing/decrementing 45
max/min primitives 45
rounding primitives 45
sorting in lists 39
square root 53
subtracting 47
testing data for 68

O
objects

memory address of 56
reading from file 25
writing to file 25

Open File Navigation Dialog 23
open-file primitive 24
OR operation, bitwise 14
or primitive 45
outputs

displaying programmatically 30

P
pack primitive 37
persistents

list of, in project 66
persistents primitive 66
pi primitive 50
pointers

obtaining address from 54
obtaining from addresses 58

Points
creating from list 27

primitives for working with 26
returning co-ordinates 28

point-to-list primitive 28
power primitive 51
prefix primitive 62
primitives

bit 13
categories in libraries 5
data 20
file 22
graphics 26
libraries containing 5

projects
list of classes in 65
list of persistents in 66
loading libraries 5

prompts, programmatic 30
put-file primitive 24
put-integer primitive 56
put-real primitive 57
put-text primitive 58

R
radians

primitives that return 45
rand primitive 51
random numbers

generating 51
seeding 51

rand-seed primitive 51
read-buffer primitive 25
read-object primitive 25
read-text primitive 25
real? primitive 68
reals

obtaining from memory 55
testing data for 68, 69
truncating 53
writing to memory 57

Rects
creating from list 27
primitives for working with 26
returning co-ordinates 28

rect-to-list primitive 28
Returns 54
reverse primitive 38
RGBs

creating from list 27
primitives for working with 26
returning colour specifiers 28

RGB-to-list primitive 28
right shift, integers 15
round primitive 51
round-down primitive 9, 52
round-up primitive 52

S
Save Location Navigation Dialog 24
search, binary 36
select primitive 30
set-nth primitive 38
set-nth! primitive 38
shallow copy primitive 21
shift left, integer 14
shift right, integers 15
show primitive 30
sin primitive 53
sort primitive 39
split-nth primitive 39
sqrt primitive 53
String primitives

library containing 5
string? primitive 68
strings

address of 58
ASCII representation of 63
concatenating 61
from ASCII equivalent 59
integer representation of 62
length in bytes 59
length of 61
location of substring in 60
obtaining from memory 56
representation of integer 60
returning characters from 61
returning first characters of 62

returning last characters of 63
sorting in lists 39
testing data for 68, 69
text representation of 63
textual value 60

string-to-integer primitive 62
subclasses

list of by class 65
list of, by class 65

subtraction
primitives 45

suffix primitive 63
System primitives

library containing 5

T
tan primitive 53
test-all? primitive 15
test-bit? primitive 15
test-one? primitive 16
text

reading from file 25
representation of string 60, 63
writing to file 26
writing to memory 58

to-ascii primitive 63
to-pointer primitive 58

to-string primitive 63
trunc primitive 53
type primitive 69
Type primitives

library containing 5
types

testing data for 69
testing externals 67

U
undefined types

testing data for 69
unpack primitive 40
use counts

and copying 20

V
value, absolute 48

W
write-object primitive 25
write-text primitive 26

X
xor primitive 45

	Primitives Reference
	Contents
	Chapter 1: Working with libraries 5
	Chapter 2: Marten Primitives 9

	Working with libraries
	Library contents
	Loading libraries
	Library contents
	Loading libraries
	To load a library into your project:
	1. From the File menu, choose Add to Project.
	2. Use the Choose Object dialog to locate and select the library or libraries you want to add to your project. Libraries are usually installed in the /Library/Frameworks directory or in the user-relative directory, ~/Library/Frameworks.
	3. Click Choose.

	Viewing the libraries in a project
	To view the libraries currently loaded into a project:
	1. Double-click the primitives icon of a project item in a Projects window.
	2. Double-click a library icon to display its primitives.

	Marten Primitives
	Primitive documentation conventions
	Primitive documentation conventions
	Syntax description - a graphic depiction of the primitive operation that provides a syntax diagram
	round-down
	Description Returns the nearest number less than or equal to the provided number according to the provided precision. Positive a...
	Inputs Number <number>:

	Syntax description
	get-nth
	Description Given a list, returns an element specified by index. This primitive can also return elements from nested lists by passing it additional index numbers.
	Inputs List <list>: the list to be searched.

	Categorized primitive information
	Description
	Inputs
	Outputs
	See also
	Compiler
	Default(s)
	Equivalent
	Example
	Note
	Side effects

	Primitives by category
	Bit
	Bit
	bit-and
	bit-not
	bit-or
	bit-shift-l
	bit-shift-r
	bit-xor
	test-all?
	test-bit?
	test-one?
	bit-and
	Description The bitwise AND of two integers is output. For example the result for 5 (b101) and 3 (b11) is 1 (b1).
	Inputs Returns the bitwise AND of two integers.
	Inputs InBits1 <integer>:

	bit-not
	Description The bitwise COMPLEMENT of an integer is output.
	Inputs InBits <integer>:

	bit-or
	Description The bitwise OR of two integers is output. For example the result for 5 (b101) and 3 (b11) is 7 (b111).
	Inputs InBits1 <integer>:

	bit-shift-l
	Description A bitwise shift left by one or more places for an integer is output. The N rightmost bits of the result are set to zero (0). For example the result for 5 (b101) shifted left by 2 is 20 (b10100).
	Inputs InBits <integer>:

	bit-shift-r
	Description A bitwise shift right with sign extension by one or more places for an integer is output. For example the result for 13 (b1101) shifted right by 2 is 3 (b11) and the result for -13 (b11110011) shifted right by 2 is -4 (b11111100).
	Inputs InBits <integer>:

	bit-xor
	Description The bitwise EXCLUSIVE-OR of two integers is output.
	Inputs InBits1 <integer>:

	test-all?
	Description Returns TRUE if all of the set bits of an integer correspond to the set bits of a provided mask.
	Inputs Value <integer>:

	test-bit?
	Description Returns TRUE if the bit in a specified position of an integer is set.
	Inputs Value <integer>:

	test-one?
	Description Returns TRUE if ONE of the set bits of an integer corresponds to one of the set bits of a provided mask. For example the result for 5 (b101) and 3 (b11) is TRUE and the result for 5 (b101) and 2 (b10) is FALSE.
	Inputs Value <integer>:

	Callbacks
	long VPL_TestCallback(long input, void *functionPtr);
	long MyCallback(long input);
	VPL_Parameter _TestCallbackProc_R = { kLongType,4,NULL,0,0,NULL};
	callback
	callback
	Description Returns a pointer to universal method suitable for use as a callback to an external procedure.
	Inputs MethodName <string>: the name of the universal method to be used as the callback.

	dispose-callback
	Description Disposes the memory in the pointer used for the callback. This primitive must be called after the routine to which the MethodPointer was passed completes execution and returns.
	Inputs MethodPointer <ABlock@>

	Data
	copy
	inst-to-list
	list-to-inst
	shallow copy
	copy
	Description Makes a copy of a Marten data element. If the item is a complex data type (instance or list), the referenced complex...
	Inputs Item <any>:

	inst-to-list
	Description Returns the class name and a list of instance attribute values of a provided instance.
	Inputs Instance <<any>>

	list-to-inst
	Description Creates and returns an instance of a specified class with a set of provided instance attribute values.
	Inputs Class <string>: the name of the class for which an instance is to be spawned.

	shallow copy
	Description Makes a shallow copy of a Marten data element. If the item is a complex object (instance or list), the referenced objects (both complex and simple) in the attributes or list slots are not copied, but their use counts are incremented.
	Inputs Item <any>:

	File
	close-file
	create-object-file
	create-text-file
	delete-file
	get-file
	open-file
	put-file
	read-buffer
	read-object
	read-text
	write-object
	write-text
	close-file
	Description Closes the file identified by the file reference number created by the primitive open-file.
	Inputs Reference number <integer>: The MacOS X file reference number.

	create-object-file
	Description Creates a new file on disk. If a file already exists, it is deleted and then the new one created.
	Inputs FSSpec <External Block>: A MacOS X FSSpec structure.

	create-text-file
	Description Creates a new file on disk of file type 'TEXT'. If a file already exists, it is deleted and then the new one created.
	Inputs FSSpec <External Block>: A MacOS X FSSpec structure.

	delete-file
	Description Deletes the specified file.
	Inputs FSSpec <External Block>: A MacOS X FSSpec structure.

	get-file
	Description Opens a MacOS X Open File Navigation Dialog. If the user selects a file, the type and the FSSpec are returned. If user cancels, then get-file FAILs.

	open-file
	Description Opens the file identified by an FSSpec and returns a file reference number to be used by primitives such as close-file and read-text.
	Inputs FSSpec <External Block>: A MacOS X FSSpec structure.

	put-file
	Description Opens a MacOS X Save Location Navigation Dialog. If the user saves the file, the type, the FSSpec, and the script code are returned. If the user cancels, then this primitive FAILs.
	Inputs Name <String>: The default name for the file to be saved.

	read-buffer
	Description Reads in the contents of the file and places them into an external block.
	Inputs Reference number <Integer>: A MacOS X file reference number

	read-object
	Description Reads in the contents of a Marten object file and returns the object.
	Inputs Reference number <Integer>: The MacOS X file reference number

	read-text
	Description Reads in the contents of a text file and returns a String.
	Inputs Reference number <Integer>: The MacOS X file reference number

	write-object
	Description Writes the provided object to the specified file.
	Inputs Reference number <Integer>: A MacOS X file reference number.

	write-text
	Description Writes the string to the text file identified by the file reference number.
	Inputs Reference number <Integer>: A MacOS X file reference number.

	Graphics
	Point
	list-to-Point
	list-to-Rect
	list-to-RGB
	Point-to-list
	Rect-to-list
	RGB-to-list

	list-to-Point
	Description Returns the point two specified by co-ordinates.
	Inputs Co-ords-list <list>: the two integers specifying the points co- ordinates.

	list-to-Rect
	Description Returns the Rect specified by a set of co-ordinates.
	Inputs Co-ords-list <list>: the four integers specifying the Rect co- ordinates.

	list-to-RGB
	Description Returns the specified RGB structure.
	Inputs Specifiers-list <list>: the three integers specifying the RGB.

	Point-to-list
	Description Returns the list of two coordinates specified by a Point.
	Inputs Point <External Block>: a MacOS X Point structure.

	Rect-to-list
	Description Returns the list of four coordinates specified by a Rect.
	Inputs Rect <External Block>: a MacOS X Rect structure.

	RGB-to-list
	Description Returns the list of three colour specifiers of a Rect.
	Inputs RGB <External Block>: a MacOS X RGB structure.

	Input/Output
	answer
	Description Displays a dialog with one to three buttons labelled with textual representations of provided Marten values and retu...
	Inputs Prompt <string>: a textual prompt to aid the user in making a choice.

	answer-v
	Description Displays a dialog with one to three buttons labelled with textual representations of provided Marten values and retu...
	Inputs Prompt <string>: a textual prompt to aid the user in making a decision.

	ask
	Description Opens a modal dialog prompting a user for input. The dialog has two buttons (Cancel and OK), an editable area, a textual prompt, and a default value in the editable area.
	Inputs Prompt <string>: a textual prompt to aid the user in providing a value.

	select
	Description Opens a modal dialog prompting the user to make a selection from a list of provided alternatives. The modal dialog has a scrolling list, two buttons (Select and Cancel), and, optionally, a textual prompt.
	Inputs Strings <list>: the items that are to be displayed in the scroll list.

	show
	Description Displays output in a modal dialog. The dialog contains a string obtained by concatenating textual representations of the inputs.
	Inputs Item1 <any>: the first of the Marten values in the concatenation of the textual representations.

	Interpreter control
	call
	compiled?
	call
	Description Using call is similar to injecting a method name on an operation, but it provides more flexibility in that it allows you to call class- based and universals.
	Inputs MethodName <String>: The name of the method to call; this can be class-based (beginning with a / slash or // double-slash), or a universal (no slash).

	compiled?
	Description Result is TRUE if your program is compiled, and FALSE if

	List
	(in)
	(join)
	(length)
	attach-l
	attach-r
	detach-l
	detach-nth
	detach-r
	find-instance
	find-sorted
	get-nth
	insert-nth
	make-list
	pack
	reverse
	set-nth
	set-nth!
	sort
	split-nth
	unpack
	(in)
	Description Searches a list for a specified item and returns the index of the first occurrence of the item. Optionally, you can ...
	Inputs List <list>: the list to be searched.

	(join)
	Description Concatenates two or more lists.
	Inputs List1 <list>: the list whose items are to be the first set of items in the new list.

	(length)
	Description Returns the length (number of elements) of a list.
	Inputs List <list>:

	attach-l
	Description Creates a new list by concatenating one or more provided elements (Element1...) and an existing list.
	Inputs Element1 <any>: the element that is to be the first item in the list.

	attach-r
	Description Creates a new list by concatenating an existing list and one or more provided elements.
	Inputs List <list>: the existing list.

	detach-l
	Description For N+1 output roots, returns the first N elements of a list and a list containing the remaining elements.
	Inputs InList <list>: a list with at least N elements.

	detach-nth
	Description Returns the Nth element of a list and a new list that results from removing the Nth element from the original list.
	Inputs InList <list>: the original list.

	detach-r
	Description For N+1 output roots, returns the last N elements of a list and a new list containing the remaining elements of the original list.
	Inputs InList <list>: a list containing at least N elements.

	find-instance
	Description Given a list of Instances, returns the index of the first instance containing a specified attribute with a provided value.Optionally, you can provide an index number to use as the starting point of the search.
	Inputs List <list>: a list of instances.

	find-sorted
	Description Uses a binary search to find an item in a SORTED list of numbers, strings, or instances. Using find-sorted, as opposed to find- instance, is faster because it uses a binary search.
	Inputs List <list>: the list to be searched.

	get-nth
	Description Given a list, returns an element specified by index. This primitive can also return elements from nested lists by passing it additional index numbers.
	Inputs List <list>: the list to be searched.

	insert-nth
	Description Creates a new list by inserting a provided element at a specified position in an existing list.
	Inputs OldList <list>: the existing list.

	make-list
	Description Creates a list of a specified length. The initial values of items in the list can be all NULLs, all identical values...
	Inputs Length <integer>: the number of items in the list.

	pack
	Description Creates a list of list of one or more elements.
	Inputs Element1 <any>: the value of the first element in the list.

	reverse
	Description Creates a new list by reversing the order of items in an existing list.
	Inputs InList <list>: the existing list.

	set-nth
	Description Creates a new list by changing the value of a list item, specified by index, in an existing list. This primitive can be used to change values in nested lists by providing additional indices.
	Inputs InList <list>:

	set-nth!
	Description Changes the value of a list item, specified by index. This primitive can be used to change values in nested lists by providing additional indices.
	Inputs Item <any>: the new value of the specified list item.

	sort
	Description Performs a simple sort on a list of numbers or strings, or sorts a list of instances on the value of a specified attribute.
	Inputs InList <list>: the existing list.

	split-nth
	Description Splits an existing list into two new lists; the first list consisting of the first N elements of the original list and the second list consisting of the remaining elements of the original list.
	Inputs List <list>: the existing list.

	unpack
	Description Given N output roots, returns the first N elements of a list. The list must contain at least N elements.
	Inputs List <list>: the original list.

	Logical/Relational
	<
	Description Succeeds if the first parameter is less than the second parameter.
	Inputs Item1 <string | number>

	<=
	Description Succeeds if the first parameter is less than or equal to the second parameter.
	Inputs Item1 <string | number>

	=
	Description If the two parameters are instances of classes, this primitive succeeds if both parameters are located at the same a...
	Inputs Item1 <any>

	>
	Description Succeeds if the first parameter is greater than the second parameter.
	Inputs Item1 <string | number>

	>=
	Description Succeeds if the first parameter is greater than or equal to the second parameter.
	Inputs Item1 <string | number>

	and
	Description Performs a logical AND on two or more boolean values.
	Inputs Boolean1 <boolean>

	choose
	Description Returns one of two values based on the value of a supplied criterion.
	Inputs Criterion <boolean>: the value that determines whether the TrueChoice parameter or FalseChoice parameter is returned by this primitive.

	equals
	Description If the two parameters are instances of classes, this primitive succeeds if both parameters are located at the same a...
	Inputs Item1 <any>

	gt
	Description Succeeds if the first parameter is greater than the second parameter.
	Inputs Item1 <string | number>

	gte
	Description Succeeds if the first parameter is greater than or equal to the second parameter.
	Inputs Item1 <string | number>

	lt
	Description Succeeds if the first parameter is less than the second parameter.
	Inputs Item1 <string | number>

	lte
	Description Succeeds if the first parameter is less than or equal to the second parameter.
	Inputs Item1 <string | number>

	not
	Description Returns the logical negation of a boolean value.
	Inputs Boolean <boolean>

	or
	Description Performs a logical OR against two or more boolean values.
	Inputs Boolean1 <boolean>

	xor
	Description Performs an XOR (exclusive OR) against two boolean values.
	Inputs Boolean1 <boolean>

	~=
	Description Succeeds if the two parameters are not equal. This is the logical negation of the value that would be returned by the = primitive.
	Inputs Item1 <any>

	Math
	*
	Description Returns the product of two or more numbers.
	Inputs Number1 <number>:

	**
	Description Returns the product of two or more integers.
	Inputs Integer1 <integer>:

	+
	Description Returns the sum of two or more numbers.
	Inputs Number1 <number>:

	++
	Description Returns the sum of two or more integers.
	Inputs Integer1 <integer>:

	+1
	Description Adds 1 to a provided number.
	Inputs Number <number>:

	-
	Description Subtracts the second parameter from the first parameter or negates the value of a single provided parameter.
	Inputs Number1 <number>:

	- -
	Description Subtracts the second integer parameter from the first or negates the value of a single provided integer.
	Inputs Integer1 <integer>:

	-1
	Description Subtracts 1 from a number.
	Inputs Number <number>:

	abs
	Description Returns the absolute value of a number.
	Inputs Number <number>:

	acos
	Description Angle is arccosine (Cosine) expressed in radians.
	Inputs Cosine <number>:

	asin
	Description Angle is arcsine (Sine) expressed in radians.
	Inputs Size <number>:

	atan
	Description Angle is arctangent (Tangent) expressed in radians.
	Inputs Tangent <number>:

	cos
	Description Cosine is cosine (Angle).

	div
	Description If two parameters are provided, this primitive divides the first parameter by the second and returns the result. If a single parameter is provided, this primitive returns its reciprocal.
	Inputs Dividend <number>:

	idiv
	Description Performs integer division. It returns the quotient and remainder resulting from dividing the first parameter by the second.
	Inputs Dividend <integer>:

	max
	Description Returns the maximum of two or more numbers.
	Inputs Number1 <number>:

	min
	Description Returns the minimum of two or more numbers.
	Inputs Number1 <number>:

	pi
	Description Returns the value of pi (3.1415926...).

	power
	Description Calculates the value of a number to a provided exponent. If both parameters are zero (0), it returns 1.
	Inputs Number <number>:

	rand
	Description Generates a random integer between and including 0 and (2^31) - 1.

	rand-seed
	Description Sets the seed for the random-number generator to the integral part of Seed (1 to (2^31) - 1).
	Inputs Seed <number>:

	round
	Description Returns the number closest to a provided number, according to a specified precision. Positive and negative values fo...
	Inputs Number <number>:

	round-down
	Description Returns the nearest number less than or equal to the provided number according to the provided precision. Positive a...
	Inputs Number <number>:

	round-up
	Description Returns the nearest number greater than or equal to a provided number, according to a specified precision. Positive ...
	Inputs Number <number>:

	sin
	Description Sine is sine (Angle).

	sqrt
	Description Returns the square root of a number.
	Inputs Number <number>:

	tan
	Description Tangent is tangent (Angle).

	trunc
	Description Returns the integer and fraction components of a provided number.
	Inputs Number <number>:

	Memory
	address-to-object
	from-pointer
	get-integer
	get-real
	get-text
	object-to-address
	put-integer
	put-real
	put-text
	string-address
	to-pointer
	address-to-object
	Description Returns the Marten object at the specified address. The address must have been generated by a call to object-to-address on the same machine (same address space), and you must be certain that the object still exists at that address.
	Inputs Address <integer>:

	from-pointer
	Description If the provided pointer is the address of a block of memory, then this primitive returns that address represented as an integer. In effect, it performs a cast of the pointer type to an integer.
	Inputs Pointer <external@>:

	get-integer
	Description Returns an integer of a specified size from a particular location within a memory block.
	Inputs Buffer <ABlock> | <ABlock@> | <ABlock@@ >| <integer>:
	1
	2
	4

	get-real
	Description Returns a real number of a specified length from a specified location within a memory block.
	Inputs Buffer <ABlock> | <ABlock@> | <ABlock@@ >| <integer>:
	4
	8
	10

	get-text
	Description Returns a string of a specified size from a particular location within a memory block.
	Inputs Buffer <ABlock> | <ABlock@> | <ABlock@@ >| <integer>:

	object-to-address
	Description Returns the address of any Marten object.
	Inputs Object <any>:

	put-integer
	Description Converts a provided integer into an integer of a specified size and places it at a specified location in a memory block.
	Inputs Buffer <ABlock> | <ABlock@> | <ABlock@@ >| <integer>:
	1
	2
	4

	put-real
	Description Converts a real into a floating point value of a specified size and places it in a particular location in a memory block.
	Inputs Buffer <ABlock> | <ABlock@> | <ABlock@@ >| <integer>:
	4
	8
	10

	put-text
	Description Writes a specified number of bytes from a string to a particular position in a memory block.
	Inputs Buffer <ABlock> | <ABlock@> | <ABlock@@ >| <integer>:

	string-address
	Description Returns the address of the first character in a string. The string should be locked whenever an address is taken or used.
	Inputs aString <string>:

	to-pointer
	Description If Address is the integer address of a block in memory, then Pointer is that same address represented as a generic pointer type in Marten. In effect, it performs a cast of the integer type to a pointer.
	Inputs Address <integer>:

	String
	byte-length
	from-ascii
	from-string
	"in"
	integer-to-string
	"join"
	"length"
	middle
	prefix
	string-to-integer
	suffix
	to-ascii
	to-string
	byte-length
	Description Returns the length of a specified string in bytes rather than characters. Use this primitive to return the length of a specified string in bytes.
	Inputs String <string>:

	from-ascii
	Description Returns the character representation of one or more ASCII codes.
	Inputs CharCodes <integer | list of integers>: charCode or charCodeList.

	from-string
	Description Returns the value textually represented by String. Type cannot be a class or External structure.
	Inputs String <string>:

	"in"
	Description Returns the location of a substring in a provided string.
	Inputs String <string>: the string in which to search.

	integer-to-string
	Description Returns the four character string representation of an integer.
	Inputs Integer <integer>:

	"join"
	Description Concatenates two or more strings.
	Inputs String1 <string>:

	"length"
	Description Returns the number of characters in a string.
	Inputs String <string>:

	middle
	Description Returns a substring of a specified number of characters from a provided string beginning at a specified position in the string.
	Inputs String <string>:

	prefix
	Description Returns two substrings; the first consisting of the first N characters of the string and the second consisting of the remaining characters.
	Inputs InString <string>:

	string-to-integer
	Description Returns the integer representation of a four character string.
	Inputs String <string>:

	suffix
	Description Returns two substrings, one consisting of the last N characters of the provided string, the other consisting of the remaining characters.
	Inputs InString <string>:

	to-ascii
	Description Returns the list of integers that are the ASCII representations of the characters in a provided string.
	Inputs String <string>:

	to-string
	Description Returns the textual representation of provided data.
	Inputs Data <any*> | Point | Rect | RGBType: Input type cannot be a class or External Structure.

	System
	ancestors
	attributes
	children
	classes
	descendants
	methods
	persistents
	ancestors
	Description Returns the names of all ancestor classes of a class specified by Instance or ClassName.
	Inputs Class <instance> | <string>: the class name or an instance of the class.

	attributes
	Description Returns the names of all instance attributess and class attributes of a specified class.
	Inputs Class <instance> | <string>: the name of the class or an instance of the class for which class and instance attribute names are to be returned.

	children
	Description Returns the names of all classes that inherit DIRECTLY from a specified class.
	Inputs Class <instance> | <string>: the name of the class or an instance of the class for which the list of child classes is to be returned.

	classes
	Description Returns the names of all classes in a project.

	descendants
	Description Return the names of all classes that are descendants of a specified class.
	Inputs Class <instance> | <string>: the name of the class or an instance of the class for which the names of descendant classes are to be returned.

	methods
	Description If the input is an Instance or aClass name, then Methods, GetMethods, and SetMethods are respectively lists of the n...
	Inputs MethodType <instance> | <string> | none

	persistents
	Description Returns the names of all persistents in the project.

	Type
	boolean?
	external-type
	instance?
	integer?
	list?
	number?
	real?
	string?
	type
	boolean?
	Description Succeeds if the provided data is boolean, (TRUE or FALSE).
	Inputs Item <any>: any Marten data item.

	external-type
	Description StructName is the name of the external type whose structure, pointer, or handle is referred to by Data. A list of possible external type names can be found in the Info window under External Structures.
	Inputs Data <external@@> | <external@> | <external>:

	instance?
	Description Succeeds if the provided data is an instance of a class.
	Inputs Item <any>: any Marten data item.

	integer?
	Description Succeeds if the provided data is an integer.
	Inputs Item <any>: any Marten data item.

	list?
	Description Succeeds if the provided data is a list.
	Inputs Item <any>: any Marten data item.

	number?
	Description Succeeds if the provided data is areal or an integer.
	Inputs Item <any>: any Marten data item.

	real?
	Description Succeeds if the provided data is a real number.
	Inputs Item <any>: any Marten data item.

	string?
	Description Succeeds if the provided data is a string.
	Inputs Item <any>: any Marten data item.

	type
	Description Returns the type of the provided Marten data.
	Inputs Item <any>: any Marten data item.

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

